Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Opt Express ; 32(6): 10552-10562, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571263

RESUMEN

In this work, we propose a practical solution to visible vortex laser emission at 532 nm based on second harmonic generation (SHG) in a well-designed waveguide-grating structure. Such an integrated structure is fabricated by femtosecond laser direct writing (FsLDW) in an LBO crystal. Confocal micro-Raman spectroscopy is employed for detailed analysis of FsLDW-induced localized crystalline damage. By optical excitation at 1064 nm, the guiding properties, SHG performance, as well as vortex laser generation of the waveguide-grating hybrid structure are systematically studied. Our results indicate that FsLDW waveguide-grating emitter is a reliable design holding great promise for nonlinear vortex beam generation in integrated optics.

2.
Opt Express ; 32(2): 2867-2883, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297805

RESUMEN

The van der Waals (vdWs) heterostructures, with vertical layer stacking structure of various two-dimensional (2D) materials, maintain the reliable photonic characteristics while compensating the shortcomings of the participating individual components. In this work, we combine the less-studied multilayer tin selenide (SnSe2) thin film with one of the traditional 2D materials, graphene, to fabricate the graphene-based vdWs optical switching element (Gr-SnSe2) with superior broadband nonlinear optical response. The transient absorption spectroscopy (TAS) measurement results verify that graphene acts as the recombination channel for the photogenerated carrier in the Gr-SnSe2 sample, and the fast recovery time can be reduced to hundreds of femtoseconds which is beneficial for the optical modulation process. The optical switching properties are characterized by the I-scan measurements, exhibiting a saturable energy intensity of 2.82 mJ·cm-2 (0.425 µJ·cm-2) and a modulation depth of 15.6% (22.5%) at the wavelength of 1030 nm (1980nm). Through integrating Gr-SnSe2 with a cladding waveguide, high-performance picosecond Q-switched operation in the near-infrared (NIR) and mid-infrared (MIR) spectral regions are both achieved. This work experimentally demonstrates the great potential of graphene-based vdWs heterostructures for applications in broadband ultrafast photonics.

3.
Opt Lett ; 49(8): 1977-1980, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621055

RESUMEN

In this work, we report on the first, to our knowledge, 2.05-µm laser based on femtosecond-laser direct written (FsLDW) Tm,Ho:YLF cladding waveguides. A channel waveguide with a 90-µm diameter "fiber-like" low-index cladding is fabricated in a 6 at. % Tm3+, 0.4 at. % Ho3+:LiYF4 crystal by FsLDW. Pumped by Ti:sapphire laser at 795.1 nm, the fabricated waveguide supports efficient lasing oscillation at 2050 nm with a maximum output power of 47.5 mW, a minimum lasing threshold of 181 mW, and a slope efficiency of 20.1%. The impacts of cavity conditions and polarizations of the pump light on the obtained lasing performance are well studied. The experimental results obtained in this study demonstrate the great potential of utilizing Tm,Ho:YLF and FsLDW for the development of durable mid-infrared lasers featuring compact designs.

4.
Opt Express ; 31(10): 16560-16569, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157732

RESUMEN

In this work, we have demonstrated tunable 1.8-µm laser operation based on a Tm:YVO4 cladding waveguide fabricated by means of femtosecond laser direct writing. Benefiting from the good optical confinement of the fabricated waveguide, efficient thulium laser operation, with a maximum slope efficiency of 36%, a minimum lasing threshold of 176.8 mW, and a tunable output wavelength from 1804 to 1830nm, has been achieved in a compact package via adjusting and optimizing the pump and resonant conditions of the waveguide laser design. The lasing performance using output couplers with different reflectivity has been well studied in detail. In particular, due to the good optical confinement and relatively high optical gain of the waveguide design, efficient lasing can be obtained even without using any cavity mirrors, thereby opening up new possibilities for compact and integrated mid-infrared laser sources.

5.
Opt Express ; 31(19): 31634-31643, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710677

RESUMEN

In this work, we fabricate a hybrid waveguide-grating vortex laser in Nd:YSAG by using femtosecond laser direct writing (FsLDW). The detailed parameters of the hybrid structure are fixed by optical simulation. In experiments, an efficient vortex beam is produced in the passive operation at 1064 nm. Under optical pumping at 808 nm, a dual-wavelength waveguide laser at 1060/1062 nm as well as a waveguide-grating vortex laser at 1060 nm are obtained. The laser performance and diffraction properties of the generated vortex laser are detailed, studied, and discussed, providing meaningful reference results toward the practical applications of FsLDW and waveguide-grating structures in integrated photonics.

6.
Opt Express ; 31(22): 36725-36735, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017816

RESUMEN

Lithium-niobate-on-insulator (LNOI) thin films have gained significant attention in integrated photonics due to their exceptional crystal properties and wide range of applications. In this paper, we propose a novel approach to realize a Q-switched vortex waveguide laser by incorporating integrated lithium niobate thin films with embedded silver nanoparticles (Ag:LNOI) as a saturable absorber. The saturable absorption characteristics of Ag:LNOI are investigated using a home-made Z-scan system. Additionally, we integrate Ag:LNOI as a saturable absorber into a Nd:YAG "ear-like" cladding waveguide platform, which is prepared via femtosecond laser direct writing. By combining this setup with helical phase plates for phase modulation in the resonator, we successfully achieve a passive Q-switched vortex laser with a high repetition rate and narrow pulse duration in the near-infrared region. This work demonstrates the potential applications of LNOI thin films towards on-chip integration of vortex waveguide laser sources.

7.
Opt Lett ; 48(12): 3159-3162, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37319051

RESUMEN

In this work, we report a highly efficient and tunable on-chip sum-frequency generation (SFG) on a thin-film lithium niobate platform via modal phase matching (e + e→e). It provides on-chip SFG a solution with both high efficiency and poling-free by using the highest nonlinear coefficient d33 instead of d31. The on-chip conversion efficiency of SFG is approximately 2143%W-1 with a full width at half maximum (FWHM) of 4.4 nm in a 3-mm-long waveguide. It can find applications in chip-scale quantum optical information processing and thin-film lithium niobate based optical nonreciprocity devices.


Asunto(s)
Dispositivos Ópticos , Óxidos , Costillas
8.
Opt Lett ; 48(3): 787-790, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723589

RESUMEN

In this Letter, we report a tailored 532/1064-nm demultiplexer based on a multimode interference (MMI) coupler with an efficiency of 100%. The device structure is designed according to the self-imaging principle, and the propagation and the wavelength division performance are simulated by the beam propagation method. The demultiplexer is fabricated in a y-cut LiNbO3 crystal by femtosecond laser direct writing (FLDW) combined with the ion implantation technique. The end-face coupling system is used to measure the near field intensity distribution, and the spectra collected from the output ports are obtained by spectrometers. The simulated and the experimental results indicate that the customized demultiplexer in the LiNbO3 crystal presents excellent wavelength division performance operating at 532 nm and 1064 nm. This work demonstrates the application potential of FLDW technology for developing miniaturized photonic components and provides a new strategy for fabricating high-efficiency integrated wavelength division devices on an optical monocrystalline platform.

9.
Chemphyschem ; 24(13): e202200842, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37071288

RESUMEN

Detailed mechanistic investigations of the interrelated roles of multiple key structure-directing agents in the growth solution of Au nanoparticles (AuNPs) is required for the optimization of synthetic protocols. Here, we report a robust seed-mediated growth strategy for synthesizing multibranched NPs (MB-AuNPs) with monodispersed size distribution, and investigate the roles of Ag ions and 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) based on an overgrowth synthesis approach. The intertwining roles of Ag+ , surface-capping stabilizers, and reducing agents were elucidated, and used to control the morphology of MB-AuNPs. The overgrowth of MB-AuNPs involves two distinct underlying pathways, namely, directional and anisotropic growth of Au branches on specific facets of Au seeds as well as an aggregation and growth mechanism governed by HEPES. In addition to Ag ions and HEPES, morphology tunability can also be achieved by pre-modification of the Au seeds with molecular probes. Optimized probe-containing MB-AuNPs prove to be excellent surface-enhanced Raman scattering (SERS) substrates and nanozymes. Taken together, the results of this work reveal the mechanistic evolution of nanocrystal growth which should stimulate the development of new synthetic strategies, improve the capabilities of tuning the optical, catalytic, and electronic properties of NPs, and further advance their applications in biolabeling, imaging, biosensing, and therapy.

10.
Small ; 18(35): e2203532, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35843890

RESUMEN

Thin-film lithium niobate platform, namely lithium-niobate-on-insulator (LNOI), brings new opportunities for integrated photonics, taking advantages from both outstanding crystalline properties and special structural features. The excellent properties of LNOI have triggered development of a variety of on-chip photonic devices for light generation and manipulation. However, as an indispensable component for photonic circuit with full functionalities, the thin-film photodetector lacks in portfolios of LNOI-based devices due to standing obstacles of low electrical conductivity and poor photoelectric conversion ability. Here, a self-powered broadband LNOI photodetector based on enhanced photovoltaic effect, benefitting from encapsulated plasmonic nanoparticles and doped silver ions, is reported. Maximum responsivity of 0.25 A W-1 and detectivity (1.56 × 1014 Jones) are achieved. First-principle calculations and electric-field simulation reveal intrinsic mechanisms and crucial roles of plasmonic nanoparticles and silver ions on photocurrent generation and collection. This work opens an avenue to develop high-performance on-chip LNOI photodetectors, offering a conceivable means toward multiple-functional photonic circuits.

11.
Opt Express ; 30(13): 23986-23999, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225069

RESUMEN

The thickness-dependent third-order nonlinear optical properties of two-dimensional ß-InSe and its potential applications as a saturable absorber in pulsed laser generation are investigated. InSe sheets with different layers are prepared by the chemical vapor deposition. Using open-aperture femtosecond Z-scan technique at 1030 nm, the modulation depth and nonlinear absorption coefficient are obtained to be 36% and -1.6 × 104 cm·GW-1, respectively. The intrinsic mechanism of the layer-dependent energy band structure evolution is analyzed based on density functional theory, and the theoretical analysis is consistent with the experimental results. Based on a waveguide cavity, a Q-switched mode-locked laser at 1 µm with a repetition frequency of 8.51 GHz and a pulse duration of 28 ps is achieved by utilizing the layered InSe as a saturable absorber. This work provides an in-depth understanding of layer-dependent properties of InSe and extends its applications in laser technology for compact light devices.

12.
Opt Lett ; 47(15): 3944-3947, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913354

RESUMEN

Whispering-gallery-mode (WGM) microcavities have shown significant applications in nanoparticle sensing for environmental monitoring and biological analysis. However, the enhancement of detection resolution often calls for active cavities or elaborate structural designs, leading to an increase of fabrication complexity and cost. Herein, heterodyne amplification is implemented in WGM microsensors based on backscattering detection mechanism. By interfering with an exotic reference laser, the reflecting light backscattered by perturbation targets can be strongly enlarged, yielding an easy-to-resolve and consequently sensitive microsensor. The dependence of detection laser frequency has also been characterized with the assistance of optothermal dynamics. We show that exploiting heterodyne interferometry boosts the detection of weak signals in microresonator systems and provides a fertile ground for optical microsensor development.


Asunto(s)
Nanopartículas
13.
Small ; 17(35): e2102351, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34263531

RESUMEN

The 2D layered materials are promising candidates for broadband, low-cost photodetectors. One deficiency of 2D materials is the relatively low absorbance of light, limiting the applications of the 2D photodetectors. Doping of plasmonic nanoparticles into 2D materials may enhance the optical absorbance owing to the localized surface plasmonic resonance (LSPR) effect; however, considerable defects may be introduced into the 2D materials at the same time, resulting in certain degradation of device performance. Here, a novel design of 2D photodetectors with enhanced photoresponsivity by non-contact plasmonic nanoparticles (NPs) is proposed, consisting of a hybrid structure of few-layer SnSe2 transferred a fused silica (SiO2 ) plate with embedded Ag NPs. The system of Ag NPs-in-SiO2 shows strong LSPR effect with significantly enhanced optical absorption, acting on SnSe2 in a non-contact configuration. Benefiting from well-preserved intrinsic features of SnSe2 and LSPR effect, the responsivity of the photodetector is enhanced by 881 times with the bias voltage of 0.1 V, which is superior to previously reported results of plasmon-enhanced 2D photodetectors. Moreover, the SiO2 with embedded Ag NPs is recyclable and can be easy to be recombined with different 2D materials. This work offers additional strategy for development of efficient, low-cost 2D photodetectors by using plasmonic NPs.

14.
Opt Express ; 29(3): 4296-4307, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771012

RESUMEN

Low-loss depressed cladding waveguide architecture is highly attractive for improving the laser performance of waveguide lasers. We report on the design and fabrication of the "ear-like" waveguide structures formed by a set of parallel tracks in neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal via femtosecond laser writing. The obtained "ear-like" waveguides are with more symmetric mode profiles and lower losses by systematically comparing the guiding properties of two kinds of normal cladding waveguide. Efficient waveguide lasers are realized based on the designed structure in both continuous wave and pulsed regimes. Combined the high-gain from cladding waveguide and special "ear-like" structure, a passively fundamentally Q-switched laser with the narrow pulse width and the high repetition rate has been obtained by using tin diselenide (SnSe2) as saturable absorber.

15.
Opt Express ; 27(21): 30941-30951, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31684335

RESUMEN

We report on mirrorless laser operation of Nd:YVO4 single- and double-cladding waveguides fabricated by femtosecond laser direct writing. Fundamental- (LP01) and high-order-mode (LP03, LP05) guiding and lasing have been observed in waveguides with different geometries and sizes. Double-cladding waveguides exhibit good guiding and lasing performance via inheriting advantages respectively from individual single cladding. As a result, continuous-wave lasing with a threshold as low as 59 mW is obtained, depending on the optical feedback provided only by Fresnel reflections at the waveguide end faces. By using few-layer graphene as saturable absorber, passively Q-switched operation in fabricated waveguides is also achieved.

16.
Opt Express ; 27(22): 32659-32665, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684474

RESUMEN

We present a system for extremely broadband terahertz (THz) generation based on an Ytterbium (Yb) amplified laser emitting 170-fs-long pulses centered at 1030 nm. The pulses are first spectrally broadened in an Ar-filled hollow-core capillary fiber (HCF) and then recompressed down to ∼18 fs with a chirped-mirror pair. Extreme broadband THz pulses of bandwidths up to 60 THz and peak electric field as high as 55 kV/cm are obtained via two-color plasma generation. The combination of high-power Yb laser systems with gas-filled HCF opens the path towards the realization of the next generation high-repetition-rate, extremely broadband, and intense-field THz time-domain spectroscopy systems.

17.
Opt Express ; 26(8): 10833-10841, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29716014

RESUMEN

Continuous-wave (cw) optical parametric oscillators (OPOs) are ideally suited for applications, for example high-resolution spectroscopy, that need coherent sources combining narrow-linewidth emission with good wavelength tunability. Here, we demonstrate for the first time cw OPOs based on a millimeter-sized whispering gallery resonator (WGR) made of cadmium silicon phosphide (CdSiP2). By employing a compact laser diode at 1.57-µm wavelength for pumping, a cw OPO with wavelength tunability from 2.3 µm to 5.1 µm is realized based on such a resonator. The oscillation thresholds are in the milliwatt range. The maximum total power conversion efficiency reaches more than 15%. The intrinsic quality factor at 1.57 µm is determined to be 3.5 × 106. This work suggests that CdSiP2 is a very promising alternative for constructing mid-infrared parametric devices.

18.
Opt Lett ; 43(23): 5745-5748, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499983

RESUMEN

Optical frequency combs are key to optical precision measurements. While most frequency combs operate in the near-infrared (NIR) regime, many applications require combs at mid-infrared (MIR), visible (VIS), or even ultra-violet (UV) wavelengths. Frequency combs can be transferred to other wavelengths via nonlinear optical processes; however, this becomes exceedingly challenging for high-repetition-rate frequency combs. Here it is demonstrated that a synchronously driven high-Q microresonator with a second-order optical nonlinearity can efficiently convert high-repetition-rate NIR frequency combs to VIS, UV, and MIR wavelengths, providing new opportunities for microresonator and electro-optic combs in applications including molecular sensing, astronomy, and quantum optics.

19.
Opt Lett ; 40(10): 2437-40, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26393759

RESUMEN

Low-loss depressed cladding waveguides have been produced in Nd:YAP laser crystal by using direct femtosecond laser writing. Under optical pump at 812 nm at room temperature, continuous-wave simultaneous dual-wavelength laser oscillations at 1064 and 1079 nm, both along TM polarization, have been realized in the waveguiding structures. It has been found that, with the variation of pump polarization, the intensity ratio of 1064 and 1079 nm emissions varies periodically, while the polarization of output dual-wavelength laser remains unchanged. The maximum output power achieved for the Nd:YAP waveguide lasers is ∼200 mW with a slope efficiency of 33.4%.

20.
Opt Express ; 22(11): 12900-8, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24921487

RESUMEN

We report on the continuous wave and passively Q-switched lasers in Nd:YAG ridge waveguides fabricated by a combination of swift Kr ion irradiation and femtosecond laser ablation. Owing to the deep penetration length (~50 µm) of 670 MeV Kr(8+) ions into the crystal, ridge waveguides with large-area cross section, supporting nearly symmetric guiding modes, were produced. Continuous wave lasers with maximum 182 mW output power at ~1064 nm have been realized at 808-nm optical pump. Using graphene as a saturable absorber, passively Q-switched waveguide laser operations were achieved. The pulsed laser produces 90 ns pulses, with a ~4.2 MHz repetition rate, 19% slope efficiency and 110 mW average output power, corresponding to single-pulse energy of 26.5 nJ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA