Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Anal Chem ; 96(23): 9636-9642, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38808501

RESUMEN

Organophosphate pesticides (OPs) are widely utilized in agricultural production, and the residues threaten public health and environmental safety due to their toxicity. Herein, a novel and simple DNA aptamer-based sensor has been fabricated for the rapid, visual, and quantitative detection of profenofos and isocarbophos. The proposed DNA aptamers with a G-quadruplex spatial structure could be recognized by SYBR Green I (SG-I), resulting in strong green fluorescence emitted by SG-I. The DNA aptamers exhibit a higher specific binding ability to target OP molecules through aromatic ring stacking, disrupting the interaction between SG-I and DNA aptamers to induce green fluorescence quenching. Meanwhile, the fluorescence wavelength of G-quadruplex fluorescence emission peaks changes, accompanied by an obvious fluorescence variation from green to blue. SG-I-modified aptasensor without any additive reference fluorescence units for use in multicolor fluorescence assay for selective monitoring of OPs was first developed. The developed aptasensor provides a favorable linear range from 0 to 200 nM, with a low detection limit of 2.48 and 3.01 nM for profenofos and isocarbophos, respectively. Moreover, it offers high selectivity and stability in real sample detection with high recoveries. Then, a self-designed portable smartphone sensing platform was successfully used for quantitative result outputs, demonstrating experience in designing a neotype sensing strategy for point-of-care pesticide monitoring.


Asunto(s)
Aptámeros de Nucleótidos , Benzotiazoles , Diaminas , Colorantes Fluorescentes , Compuestos Orgánicos , Plaguicidas , Quinolinas , Espectrometría de Fluorescencia , Aptámeros de Nucleótidos/química , Quinolinas/química , Plaguicidas/análisis , Diaminas/química , Colorantes Fluorescentes/química , Benzotiazoles/química , Compuestos Orgánicos/química , Técnicas Biosensibles/métodos , Límite de Detección , G-Cuádruplex , Malatión/análogos & derivados
2.
Anal Chem ; 96(6): 2711-2718, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38301229

RESUMEN

Excessive sulfite usage in food and pharmaceutical production causes respiratory and neurological diseases, underscoring the need for a sensitive and rapid quantification strategy. The portable sensing platform based on a luminescent hydrogel sensor is a powerful tool for the on-site, real-time detection of sulfite ions. However, the lack of recyclability in almost all reaction-based hydrogel sensors increases the application cost. This study constructed a reversible and upconversion nanoprobe combining upconversion nanoparticles (UCNPs) and pararosaniline (PAR) for sulfite detection. The upconversion nanoprobe was further encapsulated in a three-dimensional polyacrylamide hydrogel matrix to create a background-free, reversible hydrogel sensor. The near-infrared excitation of UCNPs avoids the autofluorescence in the hydrogel and real samples. Meanwhile, PAR serves as a specific recognition unit for sulfite ions. After the addition of sulfites, a specific reaction occurs between PAR and sulfites, leading to the recovery of characteristic emission at 540 nm, achieving sensitive detection of sulfite ions. Importantly, this specific reaction is reversible under thermal treatment, allowing the hydrogel sensor to return to its initial state and thus enabling reversible detection of sulfite ions. Furthermore, a portable sensing platform is developed to realize point-of-care, real-time quantitative detection of sulfite ions. The proposed upconversion reversible hydrogel sensor provides a new sensing strategy for the detection of hazardous substances in food and offers new insights into the preparation of reversible, highly sensitive hydrogel sensors.


Asunto(s)
Hidrogeles , Nanopartículas , Colorantes de Rosanilina , Toluidinas , Alimentos , Luminiscencia , Sulfitos
3.
Anal Chem ; 95(7): 3587-3595, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36753619

RESUMEN

Visual wearable devices can rapid intuitively monitor biomarkers in body fluids to indicate the human health status and provide valuable reference for further medical diagnosis. However, unavoidable interference factors such as skin color, natural light, and background luminescence can interfere with the visualization accuracy of flexible wearable devices, limiting their practical sensing application. Here, we designed a wearable sensing patch via an embedded upconversion optical probe in a 3D porous polyacrylamide hydrogel, exhibiting a multiplex chroma response to urea based on the inner filter effect, which overcomes the susceptibility to external conditions due to its near-infrared excited luminescence and improves the resolution and accuracy of visual sensing. Furthermore, a highly compatible portable sensing platform combined with a smartphone was designed to achieve in situ rapid quantitative analysis of urea. The limit of detection values of the upconversion optical probe and hydrogel sensor are as low as 1.4 and 30 µM respectively, exhibiting the practicality in different scenarios. The designed sensing patch provides a convenient and accurate sensing strategy for the detection of biomarkers in body fluids and has the potential to be developed into a point-of-care device to provide disease early warning and clinical diagnosis.


Asunto(s)
Líquidos Corporales , Dispositivos Electrónicos Vestibles , Humanos , Hidrogeles , Urea , Pronóstico , Biomarcadores
4.
Anal Chem ; 95(9): 4536-4542, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36826375

RESUMEN

Assays for carbendazim (Car) with high sensitivity and on-site screening have been urgently required to protect the ecosystem and prevent disease. In this work, a simple, sensitive, and reliable sensing system based on photoinduced electron transfer was established to detect carbendazim utilizing ultrathin graphitic carbon nitride (g-C3N4) nanosheets and rhodamine B (RB). Carbendazim reacts with g-C3N4 by electrostatic interactions to form π-π stacking, and the quenching of the blue fluorescence is caused by electron transfer. While RB works as a reference fluorescence sensor without any fluorescence change, leading to obvious ratiometric fluorescence variation from blue to purple. Under optimal conditions, a favorable linear range from 20 to 180 nM was obtained, with a low detection limit of 5.89 nM. In addition, a portable smartphone sensing platform was successfully used for carbendazim detection in real samples with excellent anti-interference capability, demonstrating the potential applications of carbendazim monitoring.

5.
Anal Chem ; 94(21): 7559-7566, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35587268

RESUMEN

Mesna is an important regional antidote for protecting the urinary system of chemotherapy patients, which requires monitoring its level in real time to ensure the curative effect. The fluorescence method is a powerful tool in real-time detection with the advantages of fast response and visualization. However, the background interference limits its application in biological sensing. Here, we developed a portable sensing platform using an upconversion-based nanosensor for visual quantitative monitoring of mesna in real-time/on-site conditions. The nanosensor was constructed by upconversion nanoparticles (UCNPs) and ethyl violet (EV), in which the UCNPs emitted red and green light, while EV quenched the green light due to the inner filter effect (IFE). The reaction of mesna with EV caused its fading and broke the IFE process, leading to the recovery of green light. By the fluorescence and colorimetric chromaticity variations, the nanosensor achieved a dual-readout detection for mesna with low limits of detection (LODs) of 26 and 48 nM, respectively. Furthermore, a highly compatible sensing platform was fabricated for facile determination of mesna with an LOD of 56 nM, realizing visual quantitative monitoring of the mesna level to ensure the curative effect and providing a new strategy for point-of-care testing of drugs in clinical settings.


Asunto(s)
Mesna , Nanopartículas , Colorimetría , Excipientes , Humanos , Límite de Detección
6.
Anal Chem ; 94(2): 1126-1134, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34935356

RESUMEN

Semicarbazide (SEM) is a widespread carcinogenic and neurotoxic food contaminant, originating from the metabolite of antibiotic nitrofurazone, which is used in aquaculture, or thermal decomposition byproduct of a flour blowing agent azodicarbonamide. Although optical detection technologies are powerful tools considering the advantages of fast response and visualization detection, there are few optical nanosensors for highly sensitive and visual assays of SEM due to no luminescence response and UV absorbance of SEM. Herein, an upconversion luminescence (UCL)-based nanosensor was designed for visual detection of SEM with high sensitivity and good selectivity. The nanosensor was constructed by combining upconversion nanoparticles (UCNPs) and phosphomolybdic acid (PMA), which was used as the specific recognition element of SEM. The developed nanosensor exhibited selective absorbance enhancement and UCL quenching behavior with the addition of SEM based on the inner filter effect (IFE). Since the change in absorbance translated into an exponential change in the luminescence, the sensitivity of the nanosensor was greatly improved. The nanosensor realized a highly sensitive and visual response to SEM in the linear range of 0.5-16 µM with a low limit of detection of 58 nM. Moreover, satisfactory recovery values ranging from 90 to 112% in spiked real samples indicated the practical applicability of the nanosensor. The nanosensor designed here provides a sensitive and convenient sensing strategy for visual detection of hazardous substances and is expected to develop the upconversion sensing application in food safety.


Asunto(s)
Luminiscencia , Nanopartículas , Excipientes , Semicarbacidas
7.
Anal Chem ; 93(43): 14506-14513, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34609831

RESUMEN

The components in the exhaled breath have been confirmed to be related to certain diseases, especially studies have shown that isopropanol (IPA) might be closely associated with illnesses such as lung cancer, and are considered as a biomarker. Herein, we designed a portable smartphone platform based on a chemically synthesized ratiometric fluorescent probe for real-time/on-site, sensitive, and quantitative visual detection of IPA in exhaled breath. The fluorescent probe was fabricated by a nicotinamide adenine dinucleotide (NAD+) functional modified onto fluorescent internal standard red carbon dots (RCDs). Whereas, IPA can convert NAD+ into reduced nicotinamide adenine dinucleotide (NADH) through an enzymatic reaction of secondary alcohol dehydrogenase (S-ADH). The electron transfer from IPA to NAD+ emitted a blue emission of NADH, which displayed consecutive color changes from red to light blue. Under optimum conditions, the fluorescent probe shows sensitive responses to IPA with a detection limit as low as 4.45 nM. Moreover, combined with the smartphone color recognizer application (APP), the ratio of fluorescence intensity response was recorded on a blue channel (B)/red channel (R), which has been employed for the visual quantitative determination of IPA with a detection limit of 8.34 nM and a recovery rate of 90.65-110.09% (RSD ≤ 4.83). The method reported here provides a convenient pathway for real-time/on-site and visual detection of IPA in exhaled air and is expected to extend the application of investigation of potential volatile biomarkers for preliminary monitoring and clinical diagnosis.


Asunto(s)
2-Propanol , Técnicas Biosensibles , Espiración , Colorantes Fluorescentes , Teléfono Inteligente
8.
Mikrochim Acta ; 188(9): 306, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34453195

RESUMEN

A portable smartphone device is reported that uses 3D printing technology for the primary diagnosis of diseases by detecting acetone. The key part of the device consists of red carbon dots (RCDs), which are used as internal standards, and a sensing reagent (3-N,N-(diacethydrazide)-9-ethylcarbazole (2-HCA)) for acetone. With an excitation wavelength of 360 nm, the emission wavelengths of 2-HCA and RCDs are 443 nm and 619 nm, respectively. 2-HCA effectively captures acetone to form a nonfluorescent acylhydrazone via a condensation reaction occurring in aqueous solution, resulting in obvious color changes from blue-violet to dark red. The detection limit for acetone is 2.62 µM (~ 0.24 ppm). This is far lower than the ketone content in normal human blood (≤ 0.50 mM) and the acetone content in human respiratory gas (≤ 1.80 ppm). The device has good recovery rates for acetone detection in blood and exhaled breath, which are 90.56-109.98% (RSD ≤ 5.48) and 92.80-108.00% (RSD ≤ 5.07), respectively. The method designed here provides a reliable way to provide health warnings by visually detecting markers of ketosis/diabetes in blood or exhaled breath. The portable smart phone device visually detects ketosis/diabetes markers in the blood or exhaled breath through the nucleophilic addition reaction, which effectively captures acetone to form nonfluorescent acyl groups. This will be a reliable tool to warn human health.


Asunto(s)
Acetona/sangre , Hidrazinas/química , Cetosis/diagnóstico , Puntos Cuánticos/química , Teléfono Inteligente , Acetona/química , Biomarcadores/sangre , Biomarcadores/química , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Carbono/química , Espiración , Humanos , Cetosis/sangre , Límite de Detección , Impresión Tridimensional , Espectrometría de Fluorescencia/instrumentación , Espectrometría de Fluorescencia/métodos
9.
Anal Chem ; 91(14): 9292-9299, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31265244

RESUMEN

A simple, instrument-free, paper-based analytical device with dual-emission carbon dots (CDs) (blue CDs and red CDs) was developed for the semiquantitative, visual, and sensitive speciation analysis of lead ions in a real sample with a sensitive detection limit of 2.89 nM. When a paper strip was immersed into the sample solution, the blue fluorescence was quenched by Pb2+ in solution, while the red fluorescence served as a background reference without color change, and significant color evolutions from blue to red were observed under the ultraviolet lamp, resulting in a semiquantitative visual detection. Furthermore, a smartphone was used in the visual detection of lead ions by identifying the RGB value of the fluorescent probe solution and corresponding paper strip. The application of smartphones and fluorescent paper strips has greatly shortened the detection time and reduced the cost of detection, providing a new strategy for the on-site and semiquantitative detection of heavy-metal ions in water samples.

10.
J Am Chem Soc ; 138(11): 3769-78, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26938117

RESUMEN

Fluorescent probes are powerful tools for the investigations of reactive oxygen species (ROS) in living organisms by visualization and imaging. However, the multiparallel assays of several ROS with multiple probes are often limited by the available number of spectrally nonoverlapping chromophores together with large invasive effects and discrepant biological locations. Meanwhile, the spontaneous ROS profilings in various living organs/tissues are also limited by the penetration capability of probes across different biological barriers and the stability in reactive in vivo environments. Here, we report a single fluorescent probe to achieve the effective discrimination and profiling of hydroxyl radicals (•OH) and hypochlorous acid (HClO) in living organisms. The probe is constructed by chemically grafting an additional five-membered heterocyclic ring and a lateral triethylene glycol chain to a fluorescein mother, which does not only turn off the fluorescence of fluorescein, but also create the dual reactive sites to ROS and the penetration capability in passing through various biological barriers. The reactions of probe with •OH and HClO simultaneously result in cyan and green emissions, respectively, providing the real-time discrimination and quantitative analysis of the two ROS in cellular mitochondria. Surprisingly, the accumulation of probes in the intestine and liver of a normal-state zebrafish and the transfer pathway from intestine-to-blood-to-organ/tissue-to-kidney-to-excretion clearly present the profiling of spontaneous •OH and HClO in these metabolic organs. In particular, the stress generation of •OH at the fresh wound of zebrafish is successfully visualized for the first time, in spite of its extremely short lifetime.


Asunto(s)
Colorantes Fluorescentes/química , Especies Reactivas de Oxígeno/análisis , Animales , Sistemas de Computación , Fluoresceínas/química , Células HeLa , Humanos , Radical Hidroxilo/análisis , Radical Hidroxilo/metabolismo , Ácido Hipocloroso/análisis , Ácido Hipocloroso/metabolismo , Ratones , Polietilenglicoles/química , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Fluorescencia/métodos , Heridas y Lesiones/metabolismo , Pez Cebra
11.
Anal Chem ; 88(12): 6105-9, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27230307

RESUMEN

Fluorescent colorimetry test papers are promising for the assays of environments, medicines, and foods by the observation of the naked eye on the variations of fluorescence brightness and color. Unlike dye-absorption-based pH test paper, however, the fluorescent test papers with wide color-emissive variations with target dosages for accurate quantification remain unsuccessful even if the multicolorful fluorescent probes are used. Here, we report the dosage-sensitive fluorescent colorimetry test paper with a very wide/consecutive "from red to cyan" response to the presence and amount of arsenic ions, As(III). Red quantum dots (QDs) were modified with glutathione and dithiothreitol to obtain the supersensitivity to As(III) by the quenching of red fluorescence through the formation of dispersive QDs aggregates. A small amount of cyan carbon dots (CDs) with spectral blue-green components as the photostable internal standard were mixed into the QDs solution to produce a composited red fluorescence. Upon the addition of As(III) into the sensory solution, the fluorescence color could gradually be reversed from red to cyan with a detection limit of 1.7 ppb As(III). When the sensory solution was printed onto a piece of filter paper, surprisingly a serial of color evolution from peach to pink to orange to khaki to yellowish to yellow-green to final cyan with the addition of As(III) was displayed and clearly discerned the dosage scale as low as 5 ppb. The methodology reported here opens a novel pathway toward the real applications of fluorescent test papers.

12.
Anal Chem ; 86(23): 11503-7, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25372629

RESUMEN

The molecular processes of drugs from cellular uptake to intracellular distribution as well as the intracellular interaction with the target molecule are critically important for the development of new antitumor drugs. In this work, we have successfully developed a label-free surface-enhanced Raman scattering (SERS) technique to monitor and visualize the metabolism of antitumor drug 6-mercaptopurine in living cells. It has been clearly demonstrated that Au@Ag NPs exhibit an excellent Raman enhancement effect to both 6-mercaptopurine and its metabolic product 6-mercaptopurine-ribose. Their different ways to absorb at the surface of Au@Ag NPs lead to the obvious spectral difference for distinguishing the antitumor drug and its metabolite by SERS spectra. The Au@Ag NPs can easily pass through cell membranes in a large amount and sensitively respond to the biological conversion of 6-mercaptopurine in tumor cells. The Raman imaging can visualize the real-time distribution of 6-mercaptopurine and its biotransformation with the concentrations in tumor cells. The SERS-based method reported here is simple and efficient for the assessments of drug efficacy and the understanding of the molecular therapeutic mechanism of antitumor drugs at the cellular level.


Asunto(s)
Mercaptopurina/análisis , Mercaptopurina/metabolismo , Espectrometría Raman , Línea Celular Tumoral , Oro/química , Humanos , Nanopartículas del Metal/química , Estructura Molecular , Plata/química , Propiedades de Superficie
13.
Talanta ; 278: 126356, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38905963

RESUMEN

Abnormal amount of dopamine (DA) in human body is closely relate to various diseases, such as Parkinson's disease, pheochromocytoma. Real-time monitoring DA is crucial for disease warning, diagnosis and treatment. Currently, most methods rely on invasive blood testing for detecting DA, which is only completed with the aid of the medical staffs in hospitals. Herein, a non-invasive fluorescence visual strategy is developed for the real-time monitoring DA, based on luminescent nanoparticles and modified mesoporous zeolite imidazole framework (ZIF-8-NH2) dodecahedrons. During the reaction process, DA is enriched through the spatial configuration of ZIF-8-NH2 and hydrogen bonding effect. The luminescence of Cr3+-doped zinc gallate (ZnGa2O4:Cr3+, ZGC) is inhibited by the photo-induced electron transfer (PET) mechanism to realize sensitively detecting DA. The intelligent sensing platform based on the designed fluorescence probe and color recognition system is structured for real-time detection of DA in urine. Furthermore, a skin-fitting hydrogel patch is prepared by combining a fluorescent probe with chitosan, which enables sensitive and accurate detection of DA in sweat without the complex sample pretreatment. The non-invasive fluorescence detection method provides an effective strategy for quantitatively monitoring DA in human fluids.

14.
Adv Sci (Weinh) ; 11(18): e2400781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552147

RESUMEN

Advancing a metal-free room temperature phosphorescent (RTP) material that exhibits multicolor emission, remarkable RTP lifetime, and high quantum yield still faces the challenge of achieving intersystem crossing between singly and triplet excited states, as well as the rapid decay of triplet excited states due to nonradiative losses. In this study, a novel strategy is proposed to address these limitations by incorporating o-phenylenediamine, which generates multiple luminescent centers, and long-chain polyacrylic acid to synthesize carbonized polymer dots (CPDs). These CPDs are then embedded in a rigid B2O3 matrix, effectively limiting nonradiative losses through the synergistic effects of polymer cross-linking and the rigid matrix. The resulting CPD-based materials exhibit remarkable ultralong phosphorescence in shades of blue and lime green, with a visible lifetime of up to 49 s and a high phosphorescence quantum yield. Simultaneously, this study demonstrates the practical applicability of these excellent material properties in anti-counterfeiting and information encryption.

15.
J Hazard Mater ; 444(Pt A): 130403, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403445

RESUMEN

Amoxicillin (AMO) is one of the most commonly used antibiotics, and its abuse in animal husbandry or clinical therapy can pose unpredictable hazards to humans. Therefore, it is crucial to develop a real-time and rapid method to accurately determine AMO content. Here, we designed a fluorescent nanoprobe for qualitative and quantitative AMO determination by using as-synthesized green safe materials of nontoxic red carbon dots (RCDs) and blue carbon dots (BCDs). In the presence of AMO, a reaction promoting hydrogen bonding occurred immediately, resulting in an instant increase in the intensity of the blue fluorescence of BCDs, accompanied by a marked color change from red to blue. For practical application, we designed a nontoxic sensing fluorescent handy needle to directly and quantitatively detect AMO in real samples. This portable and easy-to-use device was demonstrated on a smartphone platform based on 3D printing technology, which offers the advantages of simple production, excellent visualization, fast response, and instant quantitative detection. The device requires an extremely short detection time and has a sensitive detection limit of 2.39 nM. The method presented here enables real-time assessment for food safety, as well as on-site detection under field conditions to track various trace substances for timely health checks.


Asunto(s)
Amoxicilina , Teléfono Inteligente , Animales , Humanos , Enlace de Hidrógeno , Colorantes , Carbono , Hidrógeno
16.
J Hazard Mater ; 458: 132016, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451103

RESUMEN

Environmental pollution caused by tetracycline antibiotics (TCs) is a major concern for public health worldwide. Trace detection and reliable discrimination of tetracycline and its analogs are consequently essential to determine the distribution characteristics of various tetracycline family members. Here, a dual-response sensor was constructed by integrating the fluorescence emission of fluorescein isothiocyanate (FITC) doped SiO2 and Eu3+. A portable Lab-on-Paper device is further fabricated through probe immobilization, which allows convenient visual detection of tetracycline using a smartphone. In addition, for the coexistence of multiple tetracycline analogs, dimensionality reduction via principal component analysis is applied to the spectra, realizing accurate differentiation of the four most widely used tetracycline analogs (tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC), and doxycycline (DOX)). The dual-response nanoplatform enabled a wide-gamut color variation crossing from green to red, with limit of detection (LOD) of 2.9 nM and 89.8 nM for spectrometer- and paper-based sensors, respectively. Analytical performance was examined in multiple real samples, including food, environmental, and biological settings, confirming robust environmental adaptability and resistance. Compared to previous TC sensors, this method has several notable improvements, including improved ecological safety, accessibility, reproducibility, practicality, and anti-cross-interference capacity. These results highlight the potential of the proposed "two birds with one stone" strategy, providing an integrated methodology for synchronous quantitative detection and derivative identification toward environmental contaminants.


Asunto(s)
Clortetraciclina , Dióxido de Silicio , Reproducibilidad de los Resultados , Antibacterianos/análisis , Tetraciclina/análisis , Colorantes Fluorescentes , Espectrometría de Fluorescencia/métodos
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122211, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36502762

RESUMEN

Conventional surface-enhanced Raman scattering (SERS) molecular detection are based on hard and brittle substrate, which are not suitable for in-situ detection of analytes adsorbed on nonplanar surfaces. Here, we report a simple biomimetic synthesis method to fabricate lotus leaf mastoid structured AgNPs micro/nanoarrays as reliable SERS substrate. By ideal replicating mastoid structure of lotus leaf into a flexible and transparent PDMS film, followed by depositing plasmonic AgNPs, a powerful chemical sensor with high sensitivity and multiplex detecting capability is demonstrated. The employ of periodic mastoid structure array endows the sensor with high signal repeatability (RSD âˆ¼ 8.6 %), solving the general repeatability problem of SERS substrates. In addition, the detailed designed flexible and transparent PDMS substrate is capable of identifying trace analytes on curved surfaces with excellent durability. In the proof-of-concept experiment, a limit of detection (LOD) of (10-5 M to 10-7 M) was achieved on a portable Raman device for three common pesticides residues (thiram, fonofos and triadophos) on dendrobium leaves and stem according to the molecular fingerprint, indicating its excellent in-situ detection capability. Further, the multiplex detection ability of the Ag/PDMS film is also demonstrated by analyzing the mixture of four typical analytes. Benefiting from its high signal uniformity, this flexible Ag/PDMS substrate also showed good quantitative detection capabilities.


Asunto(s)
Lotus , Residuos de Plaguicidas , Residuos de Plaguicidas/análisis , Tiram/análisis , Espectrometría Raman/métodos
18.
RSC Adv ; 13(12): 8270-8280, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36926018

RESUMEN

A highly sensitive and uniform surface-enhanced Raman scattering (SERS) substrate is the guarantee for reliable quantitative analysis. Herein, a three-dimensional TiO2-Ag SERS substrate was prepared by growing a TiO2 nanorods (NRs) array on a TiO2 compact layer (c-TiO2), followed by modification with Ag nanoparticles (AgNPs). The synergy between the c-TiO2, semiconductor TiO2 NRs and the plasmonic AgNPs collaboratively endowed it with high sensitivity, in which c-TiO2 effectively blocked the recombination of electrons and holes, and the charge transfer enhancement contributed 10-fold improvement over that without the c-TiO2 substrate. Besides the high sensitivity, the TiO2-Ag hybrid array SERS substrate also showed quantitative and multi-component detecting capability. The limit of detection (LOD) for crystal violet (CV) was determined to be 10-9 M even with a portable Raman instrument. The TiO2-Ag composite structure was extended to detect organic pesticides (thiram, triazophos and fonofos), and the LODs for thiram, triazophos and fonofos were measured to be 10-7 M, 10-7 M and 10-6 M, respectively. In addition, the realistic simulation detecting pesticide residues for a real sample of dendrobium was demonstrated. The sensitive, quantitative and multiplex analysis of the TiO2-Ag hybrid array substrate indicated its great potential in the rapid detection of pesticide residues in real samples.

19.
Anal Chem ; 84(1): 255-61, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22122589

RESUMEN

Here, we report the shell thickness-dependent Raman enhancement of silver-coated gold nanoparticles (Au@Ag NPs) for the identification and detection of pesticide residues at various fruit peels. The Raman enhancement of Au@Ag NPs to a large family of sulfur-containing pesticides is ~2 orders of magnitude stronger than those of bare Au and Ag NPs, and there is a strong dependence of the Raman enhancement on the Ag shell thickness. It has been shown for the first time that the huge Raman enhancement is contributed by individual Au@Ag NPs rather than aggregated Au@Ag NPs with "hot spots" among the neighboring NPs. Therefore, the Au@Ag NPs with excellent individual-particle enhancement can be exploited as stand-alone-particle Raman amplifiers for the surface identification and detection of pesticide residues at various peels of fruits, such as apple, grape, mango, pear, and peach. By casting the particle sensors onto fruit peels, several types of pesticide residues (e.g., thiocarbamate and organophosphorous compounds) have been reliably/rapidly detected, for example, 1.5 nanograms of thiram per square centimeter at apple peel under the current unoptimized condition. The surface-lifting spectroscopic technique offers great practical potentials for the on-site assessment and identification of pesticide residues in agricultural products.


Asunto(s)
Frutas/química , Residuos de Plaguicidas/análisis , Espectrometría Raman/métodos , Oro/química , Nanopartículas del Metal , Microscopía Electrónica de Rastreo , Plata/química
20.
RSC Adv ; 12(20): 12655-12662, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35480346

RESUMEN

A novel carbon dot/Rhodamine B-based ratiometric fluorescent probe was developed for a highly sensitivity and selective detection of nitrite (NO2 -). The probe showed colour changes from blue to orange under ultraviolet light in response to NO2 - with a detection limit as low as 67 nM in the range of 0 to 40 µM. A ratiometric fluorescent test paper was successfully prepared using the probe solution, which demonstrated its feasibility towards a rapid and semi-quantitative detection of NO2 - in real samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA