Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 591(7849): 275-280, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33442058

RESUMEN

The innate immune regulator STING is a critical sensor of self- and pathogen-derived DNA. DNA sensing by STING leads to the induction of type-I interferons (IFN-I) and other cytokines, which promote immune-cell-mediated eradication of pathogens and neoplastic cells1,2. STING is also a robust driver of antitumour immunity, which has led to the development of STING activators and small-molecule agonists as adjuvants for cancer immunotherapy3. Pain, transmitted by peripheral nociceptive sensory neurons (nociceptors), also aids in host defence by alerting organisms to the presence of potentially damaging stimuli, including pathogens and cancer cells4,5. Here we demonstrate that STING is a critical regulator of nociception through IFN-I signalling in peripheral nociceptors. We show that mice lacking STING or IFN-I signalling exhibit hypersensitivity to nociceptive stimuli and heightened nociceptor excitability. Conversely, intrathecal activation of STING produces robust antinociception in mice and non-human primates. STING-mediated antinociception is governed by IFN-Is, which rapidly suppress excitability of mouse, monkey and human nociceptors. Our findings establish the STING-IFN-I signalling axis as a critical regulator of physiological nociception and a promising new target for treating chronic pain.


Asunto(s)
Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Nocicepción/fisiología , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismo , Analgesia , Animales , Femenino , Humanos , Interferón Tipo I/deficiencia , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Macaca mulatta , Masculino , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Nocicepción/efectos de los fármacos , Transducción de Señal
2.
Brain Behav Immun ; 117: 80-99, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38190982

RESUMEN

Emerging studies have demonstrated spinal microglia play a critical role in central sensitization and contribute to chronic pain. Although several mediators that contribute to microglia activation have been identified, the mechanism of microglia activation and its functionally diversified mechanisms in pathological pain are still unclear. Here we report that injured sensory neurons-derived Galectin-3 (Gal3) activates and reprograms microglia in the spinal dorsal horn (SDH) and contributes to neuropathic pain. Firstly, Gal3 is predominantly expressed in the isolectin B4 (IB4)-positive non-peptidergic sensory neurons and significantly up-regulated in dorsal root ganglion (DRG) neurons and primary afferent terminals in SDH in the partial sciatic nerve ligation (pSNL)-induced neuropathic pain model. Gal3 knockout (Gal3 KO) mice showed a significant decrease in mechanical allodynia and Gal3 inhibitor TD-139 produced a significant anti-allodynia effect in the pSNL model. Furthermore, pSNL-induced microgliosis was compromised in Gal3 KO mice. Additionally, intrathecal injection of Gal3 produces remarkable mechanical allodynia by direct activation of microglia, which have enhanced inflammatory responses with TNF-α and IL-1ß up-regulation. Thirdly, using single-nuclear RNA sequencing (snRNA-seq), we identified that Gal3 targets microglia and induces reprogramming of microglia, which may contribute to neuropathic pain establishment. Finally, Gal3 enhances excitatory synaptic transmission in excitatory neurons in the SDH via microglia activation. Our findings reveal that injured sensory neurons-derived Gal3 programs microglia in the SDH and contribute to neuropathic pain.


Asunto(s)
Galectina 3 , Neuralgia , Animales , Ratones , Galectina 3/genética , Hiperalgesia , Microglía , Células Receptoras Sensoriales
3.
J Med Virol ; 95(4): e28718, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37185840

RESUMEN

Herpetic-related neuralgia (HN) caused by varicella-zoster virus (VZV) infection is one of the most typical and common neuropathic pain in the clinic. However, the potential mechanisms and therapeutic approaches for the prevention and treatment of HN are still unclear. This study aims to provide a comprehensive understanding of the molecular mechanisms and potential therapeutic targets of HN. We used an HSV-1 infection-induced HN mouse model and screened the differentially expressed genes (DEGs) in the DRG and spinal cord using an RNAseq technique. Moreover, bioinformatics methods were used to figure out the signaling pathways and expression regulation patterns of the DEGs enriched. In addition, quantitative real-time RT-PCR and western blot were carried out to further confirm the expression of DEGs. HSV-1 inoculation in mice resulted in mechanical allodynia, thermal hyperalgesia, and cold allodynia, following the infection of HSV-1 in both DRG and spinal cord. Besides, HSV-1 inoculation induced an up-regulation of ATF3, CGRP, and GAL in DRG and activation of astrocytes and microglia in the spinal cord. Moreover, 639 genes were upregulated, 249 genes were downregulated in DRG, whereas 534 genes were upregulated and 12 genes were downregulated in the spinal cord of mice 7 days after HSV-1 inoculation. GO and KEGG enrichment analysis suggested that immune responses and cytokine-cytokine receptor interaction are involved in DRG and spinal cord neurons in mice after HSV-1 infection. In addition, CCL5 and its receptor CCR5 were significantly upregulated in DRG and spinal cord upon HSV-1 infection in mice. And blockade of CCR5 exhibited a significant analgesic effect and suppressed the upregulation of inflammatory cytokines in DRG and spinal cord induced by HSV-1 infection in mice. HSV-1 infection-induced allodynia and hyperalgesia in mice through dysregulation of immune response and cytokine-cytokine receptor interaction mechanism. Blockade of CCR5 alleviated allodynia and hyperalgesia probably through the suppression of inflammatory cytokines. Therefore, CCR5 could be a therapeutic target for the alleviation of HSV-1 infection-induced HN.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Neuralgia , Animales , Ratones , Citocinas , Modelos Animales de Enfermedad , Herpes Simple/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Inflamación/metabolismo , Neuralgia/metabolismo , Quimiocina CCL5/metabolismo , Receptores CCR5/metabolismo
4.
Brain ; 144(2): 665-681, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33367648

RESUMEN

Opioids such as morphine are mainstay treatments for clinical pain conditions. Itch is a common side effect of opioids, particularly as a result of epidural or intrathecal administration. Recent progress has advanced our understanding of itch circuits in the spinal cord. However, the mechanisms underlying opioid-induced itch are not fully understood, although an interaction between µ-opioid receptor (MOR) and gastrin-releasing peptide receptor (GRPR) in spinal GRPR-expressing neurons has been implicated. In this study we investigated the cellular mechanisms of intrathecal opioid-induced itch by conditional deletion of MOR-encoding Oprm1 in distinct populations of interneurons and sensory neurons. We found that intrathecal injection of the MOR agonists morphine or DAMGO elicited dose-dependent scratching as well as licking and biting, but this pruritus was totally abolished in mice with a specific Oprm1 deletion in Vgat+ neurons [Oprm1-Vgat (Slc32a1)]. Loss of MOR in somatostatin+ interneurons and TRPV1+ sensory neurons did not affect morphine-induced itch but impaired morphine-induced antinociception. In situ hybridization revealed Oprm1 expression in 30% of inhibitory and 20% of excitatory interneurons in the spinal dorsal horn. Whole-cell recordings from spinal cord slices showed that DAMGO induced outward currents in 9 of 19 Vgat+ interneurons examined. Morphine also inhibited action potentials in Vgat+ interneurons. Furthermore, morphine suppressed evoked inhibitory postsynaptic currents in postsynaptic Vgat- excitatory neurons, suggesting a mechanism of disinhibition by MOR agonists. Notably, morphine-elicited itch was suppressed by intrathecal administration of NPY and abolished by spinal ablation of GRPR+ neurons with intrathecal injection of bombesin-saporin, whereas intrathecal GRP-induced itch response remained intact in mice lacking Oprm1-Vgat. Intrathecal bombesin-saporin treatment reduced the number of GRPR+ neurons by 97% in the lumber spinal cord and 91% in the cervical spinal cord, without changing the number of Oprm1+ neurons. Additionally, chronic itch from DNFB-induced allergic contact dermatitis was decreased by Oprm1-Vgat deletion. Finally, naloxone, but not peripherally restricted naloxone methiodide, inhibited chronic itch in the DNFB model and the CTCL model, indicating a contribution of central MOR signalling to chronic itch. Our findings demonstrate that intrathecal morphine elicits itch via acting on MOR on spinal inhibitory interneurons, leading to disinhibition of the spinal itch circuit. Our data also provide mechanistic insights into the current treatment of chronic itch with opioid receptor antagonist such as naloxone.


Asunto(s)
Analgésicos/administración & dosificación , Morfina/administración & dosificación , Prurito/inducido químicamente , Prurito/fisiopatología , Receptores Opioides mu/fisiología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología , Animales , Dermatitis/fisiopatología , Femenino , Inyecciones Espinales , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones Endogámicos C57BL , Receptores de Bombesina/fisiología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPV/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
5.
J Neurosci ; 40(49): 9519-9532, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33158961

RESUMEN

Oxaliplatin, a platinum-based chemotherapeutic drug, which is used as first-line treatment for some types of colorectal carcinoma, causes peripheral neuropathic pain in patients. In addition, an acute peripheral pain syndrome develop in almost 90% of patients immediately after oxaliplatin treatment, which is poorly understood mechanistically but correlates with incidence and severity of the later-occurring neuropathy. Here we investigated the effects of acute oxaliplatin treatment in a murine model, showing that male and female mice develop mechanical hypersensitivity 24 h after oxaliplatin treatment. Interestingly, we found that the levels of several lipids were significantly altered in nervous tissue during oxaliplatin-induced acute pain. Specifically, the linoleic acid metabolite 9,10-EpOME (epoxide of linoleic acid) as well as the lysophospholipids lysophosphatidylcholine (LPC) 18:1 and LPC 16:0 were significantly increased 24 h after oxaliplatin treatment in sciatic nerve, DRGs, or spinal cord tissue as revealed by untargeted and targeted lipidomics. In contrast, inflammatory markers including cytokines and chemokines, ROS markers, and growth factors are unchanged in the respective nervous system tissues. Importantly, LPC 18:1 and LPC 16:0 can induce Ca2+ transients in primary sensory neurons, and we identify LPC 18:1 as a previously unknown endogenous activator of the ligand-gated calcium channels transient receptor potential V1 and M8 (transient receptor potential vanilloid 1 and transient receptor potential melastatin 8) in primary sensory neurons using both pharmacological inhibition and genetic knockout. Additionally, a peripheral LPC 18:1 injection was sufficient to induce mechanical hypersensitivity in naive mice. Hence, targeting signaling lipid pathways may ameliorate oxaliplatin-induced acute peripheral pain and the subsequent long-lasting neuropathy.SIGNIFICANCE STATEMENT The first-line cytostatic drug oxaliplatin can cause acute peripheral pain and chronic neuropathic pain. The former is causally connected with the chronic neuropathic pain, but its mechanisms are poorly understood. Here, we performed a broad unbiased analysis of cytokines, chemokines, growth factors, and ∼200 lipids in nervous system tissues 24 h after oxaliplatin treatment, which revealed a crucial role of lysophospholipids lysophosphatidylcholine (LPC) 18:1, LPC 16:0, and 9,10-EpOME in oxaliplatin-induced acute pain. We demonstrate for the first time that LPC 18:1 contributes to the activation of the ion channels transient receptor potential vanilloid 1 and transient receptor potential melastatin 8 in sensory neurons and causes mechanical hypersensitivity after peripheral injection in vivo These findings suggest that the LPC-mediated lipid signaling is involved in oxaliplatin-induced acute peripheral pain.


Asunto(s)
Antineoplásicos , Lisofosfolípidos , Oxaliplatino , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Animales , Señalización del Calcio/efectos de los fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Femenino , Hiperalgesia/inducido químicamente , Ácido Linoleico , Lipidómica , Lisofosfatidilcolinas , Masculino , Ratones , Ratones Endogámicos C57BL , Dolor/inducido químicamente , Dolor/psicología , Enfermedades del Sistema Nervioso Periférico/psicología , Canales Catiónicos TRPM/efectos de los fármacos , Canales Catiónicos TRPV/efectos de los fármacos
6.
J Neuroinflammation ; 18(1): 106, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33952299

RESUMEN

BACKGROUND: Nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)-induced oxidative stress, including the production of reactive oxygen species (ROS) and hydrogen peroxide, plays a pivotal role in neuropathic pain. Although the activation and plasma membrane translocation of protein kinase C (PKC) isoforms in dorsal root ganglion (DRG) neurons have been implicated in multiple pain models, the interactions between NOX2-induced oxidative stress and PKC remain unknown. METHODS: A spared nerve injury (SNI) model was established in adult male rats. Pharmacologic intervention and AAV-shRNA were applied locally to DRGs. Pain behavior was evaluated by Von Frey tests. Western blotting and immunohistochemistry were performed to examine the underlying mechanisms. The excitability of DRG neurons was recorded by whole-cell patch clamping. RESULTS: SNI induced persistent NOX2 upregulation in DRGs for up to 2 weeks and increased the excitability of DRG neurons, and these effects were suppressed by local application of gp91-tat (a NOX2-blocking peptide) or NOX2-shRNA to DRGs. Of note, the SNI-induced upregulated expression of PKCε but not PKC was decreased by gp91-tat in DRGs. Mechanical allodynia and DRG excitability were increased by ψεRACK (a PKCε activator) and reduced by εV1-2 (a PKCε-specific inhibitor). Importantly, εV1-2 failed to inhibit SNI-induced NOX2 upregulation. Moreover, the SNI-induced increase in PKCε protein expression in both the plasma membrane and cytosol in DRGs was attenuated by gp91-tat pretreatment, and the enhanced translocation of PKCε was recapitulated by H2O2 administration. SNI-induced upregulation of PKCε was blunted by phenyl-N-tert-butylnitrone (PBN, an ROS scavenger) and the hydrogen peroxide catalyst catalase. Furthermore, εV1-2 attenuated the mechanical allodynia induced by H2O2 CONCLUSIONS: NOX2-induced oxidative stress promotes the sensitization of DRGs and persistent pain by increasing the plasma membrane translocation of PKCε.


Asunto(s)
NADPH Oxidasa 2/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Proteína Quinasa C-epsilon/metabolismo , Animales , Membrana Celular/metabolismo , Ganglios Espinales/metabolismo , Masculino , Traumatismos de los Nervios Periféricos/metabolismo , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley
7.
Mol Pain ; 15: 1744806919836569, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30803310

RESUMEN

Cav3 channels play an important role in modulating chronic pain. However, less is known about the functional changes of Cav3 channels in superficial spinal dorsal horn in neuropathic pain states. Here, we examined the effect of partial sciatic nerve ligation (PSNL) on either expression or electrophysiological properties of Cav3 channels in superficial spinal dorsal horn. Our in vivo studies showed that the blockers of Cav3 channels robustly alleviated PSNL-induced mechanical allodynia and thermal hyperalgesia, which lasted at least 14 days following PSNL. Meanwhile, PSNL triggered an increase in both mRNA and protein levels of Cav3.2 but not Cav3.1 or Cav3.3 in rats. However, in Cav3.2 knockout mice, PSNL predominantly attenuated mechanical allodynia but not thermal hyperalgesia. In addition, the results of whole-cell patch-clamp recordings showed that both the overall proportion of Cav3 current-expressing neurons and the Cav3 current density in individual neurons were elevated in spinal lamina II neurons from PSNL rats, which could not be recapitulated in Cav3.2 knockout mice. Altogether, our findings reveal that the elevated functional Cav3.2 channels in superficial spinal dorsal horn may contribute to the mechanical allodynia in PSNL-induced neuropathic pain model.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Western Blotting , Canales de Calcio Tipo T/genética , Electrofisiología , Hiperalgesia/genética , Hiperalgesia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Sustancia Gelatinosa/citología
8.
Biochem Biophys Res Commun ; 516(3): 825-830, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31262448

RESUMEN

(-)-menthol, a major form of menthol, is one of the most commonly used chemicals. Many studies have demonstrated that (-)-menthol produces analgesic action through peripheral mechanisms which are mainly mediated by activation of TRPM8. Moreover, intrathecal injection of menthol induces analgesia as well. However, the central actions and mechanisms of (-)-menthol remain unclear. Here, we have investigated the action of (-)-menthol on excitatory synaptic transmission in spinal lamina II layer which plays a pivotal role in modulating nociceptive transmission from the periphery by using patch-clamp technique in mice spinal cord. We found that (-)-menthol increased miniature excitatory postsynaptic current frequency. The frequency increases which (-)-menthol induced were in a dose-dependent manner (EC50: 0.1079 mM). However, neither genetic knockout nor pharmacological inhibition of TRPM8 could block (-)-menthol-induced effects entirely. Furthermore, this increase was also impaired by TRPA1 antagonist HC030031, but abolished utterly by co-application of TRPM8 and TRPA1 antagonist. Our results indicate that (-)-menthol increases the excitatory synaptic transmission by activating either TRPA1 or TRPM8 channels in spinal lamina II layer.


Asunto(s)
Potenciales Postsinápticos Excitadores/efectos de los fármacos , Mentol/farmacología , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPM/genética , Acetanilidas/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Benzamidas/farmacología , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Excitadores/fisiología , Regulación de la Expresión Génica , Inyecciones Espinales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microtomía , Técnicas de Placa-Clamp , Purinas/farmacología , Médula Espinal/citología , Médula Espinal/fisiología , Transmisión Sináptica/fisiología , Canal Catiónico TRPA1/antagonistas & inhibidores , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/deficiencia , Tetrodotoxina/farmacología , Tiofenos/farmacología , Técnicas de Cultivo de Tejidos
9.
Cell Biol Int ; 41(8): 908-913, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28464448

RESUMEN

Adipose tissues play key roles in energy homeostasis. Brown adipocytes and beige adipocytes in white adipose tissue (WAT) share the similar characters of thermogenesis, both of them could be potential targets for obesity management. Several thermo-sensitive transient receptor potential channels (thermoTRPs) are shown to be involved in adipocyte biology. However, the expression pattern of thermoTRPs in adipose tissues from obese mice is still unknown. The mRNA expression of thermoTRPs in subcutaneous WAT (sWAT) and interscapular brown adipose tissue (iBAT) from lean and obese mice were measured using reverse transcriptase-quantitative PCRs (RT-qPCR). The results demonstrated that all 10 thermoTRPs are expressed in both iBAT and sWAT, and without significant difference in the mRNA expression level of thermoTRPs between these two tissues. Moreover, Trpv1 and Trpv3 mRNA expression levels in both iBAT and sWAT were significantly decreased in high fat diet (HFD)-induced obese mice and db/db (leptin receptor deficient) mice. Trpm2 mRNA expression level was significantly decreased only in sWAT from HFD-induced obese mice and db/db mice. On the other hand, Trpv2 and Trpv4 mRNA expression levels in iBAT and sWAT were significantly increased in HFD-induced obese mice and db/db mice. Taken together, we conclude that all 10 thermoTRPs are expressed in iBAT and sWAT. And several thermoTRPs differentially expressed in adipose tissues from HFD-induced obese mice and db/db mice, suggesting a potential involvement in anti-obesity regulations.


Asunto(s)
Adipocitos/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Proteínas Mitocondriales/metabolismo , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Termogénesis/fisiología , Canales de Potencial de Receptor Transitorio/biosíntesis , Canales de Potencial de Receptor Transitorio/genética
10.
Chin J Physiol ; 60(4): 207-214, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28847140

RESUMEN

It has been reported that nicotinamide-overload induces oxidative stress associated with insulin resistance, the key feature of type 2 diabetes mellitus (T2DM). This study aimed to investigate the effects of B vitamins in T2DM. Glucose tolerance tests were carried out in adult Sprague-Dawley rats treated with or without cumulative doses of B vitamins. More specifically, insulin tolerance tests were also carried out in adult Sprague-Dawley rats treated with or without cumulative doses of Vitamin B3. We found that cumulative Vitamin B1 and Vitamin B3 administration significantly increased the plasma H2O2 levels associated with high insulin levels. Only Vitamin B3 reduced muscular and hepatic glycogen contents. Cumulative administration of nicotinic acid, another form of Vitamin B3, also significantly increased plasma insulin level and H2O2 generation. Moreover, cumulative administration of nicotinic acid or nicotinamide impaired glucose metabolism. This study suggested that excess Vitamin B1 and Vitamin B3 caused oxidative stress and insulin resistance.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Insulina/sangre , Complejo Vitamínico B/toxicidad , Animales , Glucosa/metabolismo , Resistencia a la Insulina , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
11.
J Neurochem ; 136(4): 764-777, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26578070

RESUMEN

Although transient receptor potential (TRP) channels expressed in the spinal substantia gelatinosa play a role in modulating nociceptive transmission, their properties have not been fully examined yet. In order to address this issue, the effects of 1,8-cineole and its stereoisomer 1,4-cineole on excitatory transmission were examined by applying the whole-cell patch-clamp technique to substantia gelatinosa neurons in adult rat spinal cord slices. Miniature excitatory postsynaptic current frequency was increased by 1,8- and 1,4-cineole. The cineole activities were repeated and resistant to voltage-gated Na+ -channel blocker tetrodotoxin. The 1,8-cineole activity was inhibited by TRP ankyrin-1 (TRPA1) antagonists (HC-030031 and mecamylamine) but not TRP vanilloid-1 (TRPV1) antagonists (capsazepine and SB-366791), whereas the 1,4-cineole activity was depressed by the TRPV1 but not TRPA1 antagonists. Although 1,8- and 1,4-cineole reportedly activate TRP melastatin-8 (TRPM8) channels, their activities were unaffected by TRPM8 antagonist 4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide. Monosynaptically evoked C-fiber, but not Aδ-fiber excitatory postsynaptic current amplitude, was reduced by 1,8- and 1,4-cineole. These results indicate that 1,8- and 1,4-cineole increase spontaneous l-glutamate release from nerve terminals by activating TRPA1 and TRPV1 channels, respectively, while inhibiting C-fiber but not Aδ-fiber evoked l-glutamate release. This difference between 1,8- and 1,4-cineole may serve to know the properties of TRP channels located in the central terminals of primary-afferent neurons. The spinal dorsal horn lamina II (substantia gelatinosa; SG) plays a pivotal role in regulating nociceptive transmission from the periphery. We found out in the SG that 1,4- and 1,8-cineole activate TRPV1 and TRPA1 channels, respectively, located in primary-afferent, possibly C-fiber, central terminals. This difference may serve to know the properties of TRP channels expressed in the central terminals.

12.
Biochem Biophys Res Commun ; 459(3): 498-503, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25747716

RESUMEN

Transient receptor potential (TRP) channels in the spinal dorsal horn lamina II (substantia gelatinosa; SG), which are involved in the modulation of nociceptive transmission, have not yet been fully examined in property. Activation of the TRP channels by various plant-derived chemicals results in an increase in the spontaneous release of L-glutamate onto the SG neurons. We examined the effects of a monoterpene ketone (-)-carvone (contained in spearmint) and its stereoisomer (+)-carvone (in caraway) on glutamatergic spontaneous excitatory transmission in SG neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. (-)-Carvone and (+)-carvone increased the frequency of spontaneous excitatory postsynaptic current (sEPSC) in a reversible and concentration-dependent manner with a small increase in its amplitude. Half-maximal effective concentrations of (-)-carvone and (+)-carvone in increasing sEPSC frequency were 0.70 mM and 0.72 mM, respectively. The (-)-carvone but not (+)-carvone activity was inhibited by a TRPV1 antagonist capsazepine. On the other hand, the (+)-carvone but not (-)-carvone activity was inhibited by a TRPA1 antagonist HC-030031. These results indicate that (-)-carvone and (+)-carvone activate TRPV1 and TRPA1 channels, respectively, resulting in an increase in spontaneous L-glutamate release onto SG neurons, with almost the same efficacy. Such a difference in TRP activation between the stereoisomers may serve to know the properties of TRP channels in the SG.


Asunto(s)
Ácido Glutámico/metabolismo , Monoterpenos/farmacología , Sustancia Gelatinosa/efectos de los fármacos , Sustancia Gelatinosa/fisiología , Canales de Potencial de Receptor Transitorio/agonistas , Acetanilidas/farmacología , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Monoterpenos Ciclohexánicos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Monoterpenos/química , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Purinas/farmacología , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Sustancia Gelatinosa/citología , Transmisión Sináptica/efectos de los fármacos , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/agonistas , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores
13.
J Neurophysiol ; 111(5): 991-1007, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24335211

RESUMEN

Cellular mechanisms for antinociception produced by oxytocin in the spinal dorsal horn have not yet been investigated thoroughly. We examined how oxytocin affects synaptic transmission in substantia gelatinosa neurons, which play a pivotal role in regulating nociceptive transmission, by applying the whole-cell patch-clamp technique to the substantia gelatinosa neurons of adult rat spinal cord slices. Bath-applied oxytocin did not affect glutamatergic spontaneous, monosynaptically-evoked primary-afferent Aδ-fiber and C-fiber excitatory transmissions. On the other hand, oxytocin produced an inward current at -70 mV and enhanced GABAergic and glycinergic spontaneous inhibitory transmissions. These activities were repeated with a slow recovery from desensitization, concentration-dependent and mimicked by oxytocin-receptor agonist. The oxytocin current was inhibited by oxytocin-receptor antagonist, intracellular GDPßS, U-73122, 2-aminoethoxydiphenyl borate, but not dantrolene, chelerythrine, dibutyryl cyclic-AMP, CNQX, Ca(2+)-free and tetrodotoxin, while the spontaneous inhibitory transmission enhancements were depressed by tetrodotoxin. Current-voltage relation for the oxytocin current reversed at negative potentials more than the equilibrium potential for K(+), or around 0 mV. The oxytocin current was depressed in high-K(+), low-Na(+) or Ba(2+)-containing solution. Vasopressin V1A-receptor antagonist inhibited the oxytocin current, but there was no correlation in amplitude between a vasopressin-receptor agonist [Arg(8)]vasopressin and oxytocin responses. It is concluded that oxytocin produces a membrane depolarization mediated by oxytocin but not vasopressin-V1A receptors, which increases neuronal activity, resulting in the enhancement of inhibitory transmission, a possible mechanism for antinociception. This depolarization is due to a change in membrane permeabilities to K(+) and/or Na(+), which is possibly mediated by phospholipase C and inositol 1,4,5-triphosphate-induced Ca(2+)-release.


Asunto(s)
Neuronas/efectos de los fármacos , Neuronas/fisiología , Oxitocina/farmacología , Sustancia Gelatinosa/efectos de los fármacos , Sustancia Gelatinosa/fisiología , Transmisión Sináptica/efectos de los fármacos , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas , Masculino , Ratas , Ratas Sprague-Dawley
14.
Pain ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38452223

RESUMEN

ABSTRACT: Secreted microRNAs (miRNAs) have been detected in various body fluids including the cerebrospinal fluid, yet their direct role in regulating synaptic transmission remains uncertain. We found that intrathecal injection of low dose of let-7b (1 µg) induced short-term (<24 hours) mechanical allodynia and heat hyperalgesia, a response that is compromised in Tlr7-/- or Trpa1-/- mice. Ex vivo and in vivo calcium imaging in GCaMP6-report mice revealed increased calcium signal in spinal cord afferent terminals and doral root ganglion/dorsal root ganglia neurons following spinal perfusion and intraplantar injection of let-7b. Patch-clamp recordings also demonstrated enhanced excitatory synaptic transmission (miniature excitatory postsynaptic currents [EPSCs]) in spinal nociceptive neurons following let-7b perfusion or optogenetic activation of axonal terminals. The elevation in spinal calcium signaling and EPSCs was dependent on the presence of toll-like receptor-7 (TLR7) and transient receptor potential ion channel subtype A1 (TRPA1). In addition, endogenous let-7b is enriched in spinal cord synaptosome, and peripheral inflammation increased let-7b in doral root ganglion/dorsal root ganglia neurons, spinal cord tissue, and the cerebrospinal fluid. Notably, let-7b antagomir inhibited inflammatory pain and inflammation-induced synaptic plasticity (EPSC increase), suggesting an endogenous role of let-7b in regulating pain and synaptic transmission. Furthermore, intrathecal injection of let-7b, at a higher dose (10 µg), induced persistent mechanical allodynia for >2 weeks, which was abolished in Tlr7-/- mice. The high dose of let-7b also induced microgliosis in the spinal cord. Of interest, intrathecal minocycline only inhibited let-7b-induced mechanical allodynia in male but not female mice. Our findings indicate that the secreted microRNA let-7b has the capacity to provoke pain through both neuronal and glial signaling, thereby establishing miRNA as an emerging neuromodulator.

15.
J Clin Invest ; 134(9)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530364

RESUMEN

G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here, we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and is selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX- and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is coexpressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the proresolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10- or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a therapeutic target for the protection of neuropathy and chronic pain.


Asunto(s)
Ácidos Docosahexaenoicos , Ganglios Espinales , Neuroglía , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Ganglios Espinales/metabolismo , Homeostasis , Ratones Noqueados , Ratones Transgénicos , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/patología , Neuroglía/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
16.
J Neurophysiol ; 110(3): 658-71, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23657286

RESUMEN

Transient receptor potential (TRP) channels are thought to play a role in regulating nociceptive transmission to spinal substantia gelatinosa (SG) neurons. It remains to be unveiled whether the TRP channels in the central nervous system are different in property from those involved in receiving nociceptive stimuli in the peripheral nervous system. We examined the effect of the vanilloid compound zingerone, which activates TRPV1 channels in the cell body of a primary afferent neuron, on glutamatergic excitatory transmission in the SG neurons of adult rat spinal cord slices by using the whole cell patch-clamp technique. Bath-applied zingerone reversibly and concentration-dependently increased spontaneous excitatory postsynaptic current (EPSC) frequency. This effect was accompanied by an inward current at -70 mV that was resistant to glutamate receptor antagonists. These zingerone effects were repeated and persisted in Na(+)-channel blocker tetrodotoxin-, La(3+)-, or IP3-induced Ca(2+)-release inhibitor 2-aminoethoxydiphenyl borate-containing or Ca(2+)-free Krebs solution. Zingerone activity was resistant to the selective TRPV1 antagonist capsazepine but sensitive to the nonselective TRP antagonist ruthenium red, the TRPA1 antagonist HC-030031, and the Ca(2+)-induced Ca(2+)-release inhibitor dantrolene. TRPA1 agonist allyl isothiocyanate but not capsaicin inhibited the facilitatory effect of zingerone. On the other hand, zingerone reduced monosynaptically evoked EPSC amplitudes, as did TRPA1 agonists. Like allyl isothiocyanate, zingerone enhanced GABAergic spontaneous inhibitory transmission in a manner sensitive to tetrodotoxin. We conclude that zingerone presynaptically facilitates spontaneous excitatory transmission, probably through Ca(2+)-induced Ca(2+)-release mechanisms, and produces a membrane depolarization in SG neurons by activating TRPA1 but not TRPV1 channels.


Asunto(s)
Guayacol/análogos & derivados , Neuronas/efectos de los fármacos , Sustancia Gelatinosa/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Canales Catiónicos TRPC/agonistas , Canales Catiónicos TRPV/agonistas , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ácido Glutámico/fisiología , Guayacol/farmacología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Sustancia Gelatinosa/fisiología , Canal Catiónico TRPA1
17.
Mol Pain ; 9: 16, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23537341

RESUMEN

BACKGROUND: Proinflammatory cytokine interleukin-1ß (IL-1ß) released from spinal microglia plays an important role in the maintenance of acute and chronic pain states. However, the cellular basis of this action remains poorly understood. Using whole-cell patch-clamp recordings, we examined the action of IL-1ß on AMPA- and NMDA-receptor-mediated currents recorded from substantia gelatinosa (SG) neurons of adult rat spinal cord slices which are key sites for regulating nociceptive transmission from the periphery. RESULTS: AMPA- and NMDA-induced currents were increased in peak amplitude by IL-1ß in a manner different from each other in SG neurons. These facilitatory actions of IL-1ß were abolished by IL-1 receptor (IL-1R) antagonist (IL-1ra), which by itself had no detectable effects on AMPA- and NMDA-induced currents. The AMPA- but not NMDA-induced current facilitated by IL-1ß was recovered to control level 30 min after IL-1ß washout and largely depressed in Na+-channel blocker tetrodotoxin-containing or nominally Ca2+-free Krebs solution. Minocycline, a microglia inhibitor, blocked the facilitatory effect of IL-1ß on AMPA- but not NMDA-induced currents, where minocycline itself depressed NMDA- but had not any effects on AMPA-induced currents. CONCLUSIONS: IL-1ß enhances AMPA and NMDA responses in SG neurons through IL-1R activation; the former but not latter action is reversible and due to an increase in neuronal activity in a manner dependent on extracellular Ca2+ and minocycline. It is suggested that AMPA and NMDA receptors are positively modulated by IL-1ß in a manner different from each other; the former but not latter is mediated by a neurotransmitter released as a result of an increase in neuronal activity. Since IL-1ß contributes to nociceptive behavior induced by peripheral nerve or tissue injury, the present findings also reveal an important cellular link between neuronal and glial cells in the spinal dorsal horn.


Asunto(s)
Envejecimiento/metabolismo , Interleucina-1beta/farmacología , Activación del Canal Iónico/efectos de los fármacos , Células del Asta Posterior/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Calcio/metabolismo , Humanos , Técnicas In Vitro , Masculino , Minociclina/farmacología , N-Metilaspartato/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Células del Asta Posterior/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Interleucina-1/metabolismo , Sustancia Gelatinosa/citología , Sustancia Gelatinosa/metabolismo , Tetrodotoxina/farmacología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
18.
Aging Cell ; 22(11): e14002, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37837625

RESUMEN

Aging is a major risk factor for cardiovascular diseases. Our previous studies demonstrate that aging impairs the caveolar T-type CaV 3.2-RyR axis for extracellular Ca2+ influx to trigger Ca2+ sparks in vascular smooth muscle cells (VSMCs). We hypothesize that the administration of senolytics, which can selectively clear senescent cells, could preserve the caveolar CaV 3.2-RyR axis in aging VSMCs. In this study, 10-month-old mice were administered the senolytics cocktail consisting of dasatinib (5 mg/kg) and quercetin (50 mg/kg) or vehicle bi-weekly for 4 months. Using VSMCs from mouse mesenteric arteries, we found that Ca2+ sparks were diminished after caveolae disruption by methyl-ß-cyclodextrin (10 mM) in cells from D + Q treated but not vehicle-treated 14-month-old mice. D + Q treatment promoted the expression of CaV 3.2 in 14-month-old mesenteric arteries. Structural analysis using electron tomography and immunofluorescence staining revealed the remodeling of caveolae and co-localization of CaV 3.2-Cav-1 in D + Q treatment aged mesenteric arteries. In keeping with theoretical observations, Cav 3.2 channel inhibition by Ni2+ (50 µM) suppressed Ca2+ in VSMCs from the D + Q group, with no effect observed in vehicle-treated arteries. Our study provides evidence that age-related caveolar CaV 3.2-RyR axis malfunction can be alleviated by pharmaceutical intervention targeting cellular senescence. Our findings support the potential of senolytics for ameliorating age-associated cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Caveolas , Animales , Ratones , Caveolas/metabolismo , Arterias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Senoterapéuticos
19.
Neuroscience ; 516: 1-14, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822350

RESUMEN

Chemotherapy-induced peripheral neuropathy is one of the most common side effects of anticancer therapy. It is anticipated that chemotherapies with different mechanisms of action may affect somatosensory neurons differently. This study aimed to explore similar and differential etiologies of oxaliplatin- and paclitaxel-induced neuropathy by comparing the transcriptomes of dorsal root ganglia (DRGs). We retrieved our previously published transcriptome data of DRGs extracted from vehicle-, oxaliplatin- and paclitaxel-treated rats (GSE160543), to analyze in parallel the differentially expressed genes (DEGs) and Gene ontology (GO) terms enrichment. We found that both oxaliplatin and paclitaxel treatments consistently produced mechanical allodynia, thermal hyperalgesia, and cold hyperalgesia in rats. Compared to vehicle, 320 and 150 DEGs were identified after oxaliplatin and paclitaxel treatment, respectively. Only 17 DEGs were commonly dysregulated by the two reagents. Activating transcription factor 3 (Atf3), a marker of nerve injury, was elevated only after paclitaxel treatment. GO analysis suggested that paclitaxel treatment was associated with neuronal changes characterized by numerous terms that are related to synaptic transmission, while oxaliplatin was more likely to affect dividing cells (e.g., the glia) and neuroinflammation. Notably, 29 biological processes GO terms were commonly enriched in response to both drugs. However, 28 out of 29 terms were oppositely modulated. This study suggests that distinct mechanisms underly paclitaxel- and oxaliplatin-induced neuropathy. Paclitaxel might directly affect somatosensory neurons while oxaliplatin primarily targets dividing cells and immune cells.


Asunto(s)
Antineoplásicos , Enfermedades del Sistema Nervioso Periférico , Ratas , Animales , Oxaliplatino/toxicidad , Oxaliplatino/uso terapéutico , Paclitaxel/toxicidad , Antineoplásicos/toxicidad , Transcriptoma , Ganglios Espinales , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico
20.
Neuron ; 111(17): 2709-2726.e9, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37348508

RESUMEN

Programmed death protein 1 (PD-1) and its ligand PD-L1 constitute an immune checkpoint pathway. We report that neuronal PD-1 signaling regulates learning/memory in health and disease. Mice lacking PD-1 (encoded by Pdcd1) exhibit enhanced long-term potentiation (LTP) and memory. Intraventricular administration of anti-mouse PD-1 monoclonal antibody (RMP1-14) potentiated learning and memory. Selective deletion of PD-1 in excitatory neurons (but not microglia) also enhances LTP and memory. Traumatic brain injury (TBI) impairs learning and memory, which is rescued by Pdcd1 deletion or intraventricular PD-1 blockade. Conversely, re-expression of Pdcd1 in PD-1-deficient hippocampal neurons suppresses memory and LTP. Exogenous PD-L1 suppresses learning/memory in mice and the excitability of mouse and NHP hippocampal neurons through PD-1. Notably, neuronal activation suppresses PD-L1 secretion, and PD-L1/PD-1 signaling is distinctly regulated by learning and TBI. Thus, conditions that reduce PD-L1 levels or PD-1 signaling could promote memory in both physiological and pathological conditions.


Asunto(s)
Antígeno B7-H1 , Lesiones Traumáticas del Encéfalo , Humanos , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Aprendizaje , Hipocampo/metabolismo , Anticuerpos Monoclonales/metabolismo , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA