Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(8): 1334-1347, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36383401

RESUMEN

More than 250 million people in the world are chronically infected with hepatitis B virus (HBV), which causes serious complications. Host genetic susceptibility is essential for chronic hepatitis B (CHB), and our previous genome-wide association study identified a single-nucleotide polymorphism (SNP), rs1883832, in the 5' untranslated region of CD40 predisposing to chronic HBV infection, but the underlying mechanism remains undefined. This study aimed to investigate whether rs1883832 was the real functional SNP (fSNP) of CD40 and how it modulated HBV clearance in hepatocytes. We determined the fSNP of CD40 and its regulatory protein(s) using luciferase reporter assays, electrophoretic mobility shift assay, flanking restriction enhanced pulldown and chromatin immunoprecipitation. The potential anti-HBV activity of CD40 and its downstream molecule BST2 was assessed in HBV-transfected and HBV-infected hepatoma cells and HBV-infected primary human hepatocytes. Moreover, the mechanism of CD40 was investigated by mRNA sequencing, quantitative real-time polymerase chain reaction, immunofluorescence and western blot. We revealed rs1883832 as the true fSNP of CD40 and identified ANXA2 as a negative regulatory protein that preferentially bound to the risk allele T of rs1883832 and hence reduced CD40 expression. Furthermore, CD40 suppressed HBV replication and transcription in hepatocytes via activating the JAK-STAT pathway. BST2 was identified to be the key IFN-stimulated gene regulated by CD40 after activating JAK-STAT pathway. Inhibition of JAK/STAT/BST2 axis attenuated CD40-induced antiviral effect. In conclusion, a functional variant of CD40 modulates HBV clearance via regulation of the ANXA2/CD40/BST2 axis, which may shed new light on HBV personalized therapy.


Asunto(s)
Anexina A2 , Hepatitis B Crónica , Hepatitis B , Humanos , Virus de la Hepatitis B/genética , Quinasas Janus/metabolismo , Estudio de Asociación del Genoma Completo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Hepatocitos/metabolismo , Hepatitis B Crónica/genética , Hepatitis B Crónica/metabolismo , Factores de Transcripción/genética , Hepatitis B/metabolismo , Antígenos CD/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/farmacología , Anexina A2/genética
2.
Acc Chem Res ; 57(18): 2678-2688, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39190683

RESUMEN

ConspectusCarbon-based two-dimensional (2D) functional materials exhibit potential across a wide spectrum of applications from chemical separations to catalysis and energy storage and conversion. In this Account, we focus on recent advances in the manipulation of 2D carbonaceous materials and their composites through computational design and simulations to address how the precise control over material structure at the atomic level correlates with enhanced functional properties such as gas permeation, selectivity, membrane transport, and charge storage. We highlight several key concepts in the computational design and tuning of 2D structures, such as controlled stacking, ion gating, interlayer pillaring, and heterostructure charge transfer.The process of creating and adjusting pores within graphene sheets is vital for effective molecular separation. Simulations show the power of controlling the offset distance between layers of porous graphene in precisely regulating the pore size to enhance gas separation and entropic selectivity. This strategy of controlled stacking extends beyond graphene to include covalent organic frameworks (COFs) such as covalent triazine frameworks (CTFs). Experimental assembly of the layers has been achieved through electrostatic interactions, thermal transformation, and control of side chain interactions.Graphene can interface with ionic liquids in various forms to enhance its functionality. A computational proof-of-concept showcases an ion-gating concept in which the interaction of anions with the pores in graphene allows the anions to dynamically gate the pores for selective gas transport. Realization of the concept has been achieved in both porous graphene and carbon molecular sieve membranes. Ionic liquids can also intercalate between graphene layers to form interlayer pillaring structures, opening the slit space. Grand canonical Monte Carlo simulations show that these structures can be used for efficient gas capture and separation. Experiments have demonstrated that the interlayer space can be tuned by the density of the pillars and that, when fully filled with ionic liquids and forming a confined interface structure, the graphene oxide membrane achieves much higher selectivity for gas separations. Moreover, graphene can interface with other 2D materials to form heterostructures where interfacial charge transfers take place and impact the function. Both ion transport and charge storage are influenced by both the local electric field and chemical interactions.Fullerene can be used as a building block and covalently linked together to construct a new type of 2D carbon material beyond a one-atom-thin layer that also has long-range-ordered subnanometer pores. The interstitial sites among fullerenes form funnel-shaped pores of 2.0-3.3 Å depending on the crystalline phase. The quasi-tetragonal phases are shown by molecular dynamics simulations to be efficient for H2 separation. In addition, defects such as fullerene vacancies can be introduced to create larger pores for the separation of organic solvents.In conclusion, the key to imputing functions to 2D carbonaceous materials is to create new interactions and interfaces and to go beyond a single-atom layer. First-principles and molecular simulations can further guide the discovery of new 2D carbonaceous materials and interfaces and provide atomistic insights into their functions.

3.
Proc Natl Acad Sci U S A ; 119(13): e2116342119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35286217

RESUMEN

SignificanceTo adapt to arboreal lifestyles, treefrogs have evolved a suite of complex traits that support vertical movement and gliding, thus presenting a unique case for studying the genetic basis for traits causally linked to vertical niche expansion. Here, based on two de novo-assembled Asian treefrog genomes, we determined that genes involved in limb development and keratin cytoskeleton likely played a role in the evolution of their climbing systems. Behavioral and morphological evaluation and time-ordered gene coexpression network analysis revealed the developmental patterns and regulatory pathways of the webbed feet used for gliding in Rhacophorus kio.


Asunto(s)
Locomoción , Árboles , Adaptación Fisiológica/genética , Animales , Anuros , Evolución Biológica , Fenómenos Biomecánicos , Genómica , Humanos , Locomoción/genética
4.
Nano Lett ; 24(37): 11537-11543, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39236216

RESUMEN

The potential of high entropy oxides (HEOs) as high-performance energy storage materials and catalysts has been mainly understood through their bulk structures. However, the importance of their surfaces, which may play an even more critical role, remains largely unknown. In this study, we employed advanced scanning transmission electron microscopy to investigate the atomic-scale structural and chemical responses of CeYLaHfTiZrOx HEOs to high-temperature redox environments. Our observations reveal dynamic elemental and structural reconstructions in the surface of HEOs under different gas environments, contrasting with the high stability of the bulk structure. Notably, the surfaces of HEO particles consistently exhibit abundant oxygen vacancies, regardless of the redox environment. These findings indicate that HEOs offer distinct advantages in facilitating chemical and electrochemical reactions, relying on oxygen vacancies. Our results also suggest that the exceptional performance of HEOs in energy storage applications arises from surface structural and chemical adaptability.

5.
J Am Chem Soc ; 146(17): 11773-11781, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648616

RESUMEN

Natural enzymes intricately regulate substrate accessibility through specific amino acid sequences and folded structures at their active sites. Achieving such precise control over the microenvironment has proven to be challenging in nanocatalysis, especially in the realm of ligand-stabilized metal nanoparticles. Here, we use atomically precise metal nanoclusters (NCs) as model catalysts to demonstrate an effective ligand engineering strategy to control the local concentration of CO2 on the surface of gold (Au) NCs during electrocatalytic CO2 reduction reactions (CO2RR). The precise incorporation of two 2-thiouracil-5-carboxylic acid (TCA) ligands within the pocket-like cavity of [Au25(pMBA)18]- NCs (pMBA = para-mercaptobenzoic acid) leads to a substantial acceleration in the reaction kinetics of CO2RR. This enhancement is attributed to a more favorable microenvironment in proximity to the active site for CO2, facilitated by supramolecular interactions between the nucleophilic Nδ- of the pyrimidine ring of the TCA ligand and the electrophilic Cδ+ of CO2. A comprehensive investigation employing absorption spectroscopy, mass spectrometry, isotopic labeling measurements, electrochemical analyses, and quantum chemical computation highlights the pivotal role of local CO2 enrichment in enhancing the activity and selectivity of TCA-modified Au25 NCs for CO2RR. Notably, a high Faradaic efficiency of 98.6% toward CO has been achieved. The surface engineering approach and catalytic fundamentals elucidated in this study provide a systematic foundation for the molecular-level design of metal-based electrocatalysts.

6.
J Am Chem Soc ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39378427

RESUMEN

Hydrogen titanates (HTOs) form a diverse group of metastable, layered titanium oxides with an interlayer containing both water molecules and structural protons. We investigated how the chemistry of this interlayer environment influenced electrochemical Li+-insertion in a series of HTOs, H2TiyO2y+1·nH2O (y = 3, 4, and 5). We correlated the electrochemical response with the physical and chemical properties of HTOs using operando X-ray diffraction, in situ differential electrochemical mass spectroscopy, solid-state proton nuclear magnetic resonance, and quasi-elastic neutron scattering. We found that the potential for the first reduction reaction trended with the relative acidity of the structural protons. This mechanism was supported with first-principles density functional theory (DFT) calculations. We propose that the electrochemical reaction involves reduction of the structural protons to yield hydrogen gas and formation of a lithiated hydrogen titanate (H2-xLixTiyO2y+1). The hydrogen gas is confined within the HTO lattice until the titanate structure expands upon subsequent oxidation. Our work has implications for the electrochemical behavior of insertion hosts containing hydrogen and structural water molecules, where hydrogen evolution is expected at potentials below the hydrogen reduction potential and in the absence of electrolyte proton donors. This behavior is an example of electrochemical electron transfer to a nonmetal element in a metal oxide host, in analogy to anion redox.

7.
J Am Chem Soc ; 146(39): 26994-27005, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39297671

RESUMEN

Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu13(Nap)3(PPh3)7H10 (hereafter Cu13Nap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions. In comparison, the isostructural Cu13(DCBT)3(PPh3)7H10 (hereafter Cu13DCBT), stabilized by 2,4-dichlorobenzenethiolate (DCBT), yields only 28%, and other previously reported Cu NCs (Cu28, Cu29, Cu45, Cu57, and Cu61) yield in the range of 6-18%. The introduction of naphthalene thiolate to the surface of Cu13 NCs influences their electronic structure and charge transfer in the ligand shell, enhancing visible light absorption and catalytic performance. Density functional theory (DFT) and experimental evidence suggest that the reaction proceeds primarily through an energy transfer mechanism. The energy transfer pathway is uncommon in the context of previous reports for decarboxylative oxidation reactions. Our findings suggest that strategically manipulating ligands holds significant potential for creating composite active sites on atomically precise copper NCs, resulting in enhanced catalytic efficacy and selectivity across various challenging reactions.

8.
J Am Chem Soc ; 146(37): 25669-25679, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39136967

RESUMEN

The surging demand for high-purity individual lanthanides necessitates the development of novel and exceptionally selective separation strategies. At the heart of these separation systems is an organic compound that, based on its structural features, selectively recognizes the lighter or heavier lanthanides in the trivalent lanthanide (Ln) series. This work emphasizes the significant implications resulting from modifying the donor group configuration within an N,O-based tetradentate ligand and the changes in the solvation environment of Ln ions in the process of separating Lns, with the unique ability to achieve peak selectivity in the light, medium, and heavy Ln regions. The structural rigidity of the bis-lactam-1,10-phenanthroline ligand enforces size-based selectivity, displaying an exceptional affinity for Lns having larger ionic radii such as La. Modifying the ligand by eliminating one preorganization element (phenanthroline → bipyridine) results in the fast formation of complexes with light Lns, but, in the span of hours, the peak selectivity shifts toward middle Ln (Sm), resulting in time-resolved separation. As expected, at low nitric acid concentrations, the neutral tetradentate ligand complexes with Ln3+ ions. However, the change in extraction mechanism is observed at high nitric acid concentrations, leading to the formation and preferential extraction of anionic heavy Ln species, [Ln(NO3)x+3]x-, that self-assemble with two ligands that have undergone protonation, forming intricate supramolecular architectures. The tetradentate ligand that is structurally balanced with restrictive and unrestrictive motifs demonstrates unique, controllable selectivity for light, middle, and heavy Lns, underscoring the pivotal role of solvation and ion interactions within the first and second coordination spheres.

9.
J Comput Chem ; 45(27): 2294-2307, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38847556

RESUMEN

Herein, we present a density functional theory with dispersion correction (DFT-D) calculations that focus on the intercalation of ionic liquids (ILs) electrolytes into the two-dimensional (2D) Ti3C2Tx MXenes. These ILs include the cation 1-ethyl-3-methylimidazolium (Emim+), accompanied by three distinct anions: bis(trifluoromethylsulfonyl)imide (TFSA-), (fluorosulfonyl)imide (FSA-) and fluorosulfonyl(trifluoromethanesulfonyl)imide (FTFSA-). By altering the surface termination elements, we explore the intricate geometries of IL intercalation in neutral, negative, and positive pore systems. Accurate estimation of charge transfer is achieved through five population analysis models, such as Hirshfeld, Hirshfeld-I, DDEC6 (density derived electrostatic and chemical), Bader, and VDD (voronoi deformation density) charges. In this work, we recommend the DDEC6 and Hirshfeld-I charge models, as they offer moderate values and exhibit reasonable trends. The investigation, aimed at visualizing non-covalent interactions, elucidates the role of cation-MXene and anion-MXene interactions in governing the intercalation phenomenon of ionic liquids within MXenes. The magnitude of this role depends on two factors: the specific arrangement of the cation, and the nature of the anionic species involved in the process.

10.
Small ; 20(36): e2401798, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38700074

RESUMEN

The covalent organic frameworks (COFs) possessing high crystallinity and capability to capture low-concentration CO2 (400 ppm) from air are still underdeveloped. The challenge lies in simultaneously incorporating high-density active sites for CO2 insertion and maintaining the ordered structure. Herein, a structure engineering approach is developed to afford an ionic pair-functionalized crystalline and stable fluorinated COF (F-COF) skeleton. The ordered structure of the F-COF is well maintained after the integration of abundant basic fluorinated alcoholate anions, as revealed by synchrotron X-ray scattering experiments. The breakthrough test demonstrates its attractive performance in capturing (400 ppm) CO2 from gas mixtures via O─C bond formation, as indicated by the in situ spectroscopy and operando nuclear magnetic resonance spectroscopy using 13C-labeled CO2 sources. Both theoretical and experimental thermodynamic studies reveal the reaction enthalpy of ≈-40 kJ mol-1 between CO2 and the COF scaffolds. This implies weaker interaction strength compared with state-of-the-art amine-derived sorbents, thus allowing complete CO2 release with less energy input. The structure evolution study from synchrotron X-ray scattering and small-angle neutron scattering confirms the well-maintained crystalline patterns after CO2 insertion. The as-developed proof-of-concept approach provides guidance on anchoring binding sites for direct air capture (DAC) of CO2 in crystalline scaffolds.

11.
J Clin Microbiol ; 62(2): e0139623, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38259071

RESUMEN

Chemokine receptor 4 (CXCR4) plays a vital role in immunoregulation during hepatitis B virus (HBV) infection. This study aimed to screen single-nucleotide polymorphisms (SNPs) of CXCR4 for predicting pegylated interferon-alpha (PegIFNα) therapy response in chronic hepatitis B (CHB) patients. This retrospective cohort study enrolled a total of 945 CHB patients in two cohorts (Cohort 1, n = 238; Cohort 2, n = 707), and all the patients were hepatitis B e antigen (HBeAg)-positive and treated with PegIFNα for 48 weeks and followed up for 24 weeks. Twenty-two tag SNPs were selected in CXCR4 and its flanking region. A polygenic score (PGS) was utilized to evaluate the cumulative effect of multiple SNPs. The relationships between CXCR4 SNPs and PGS and PegIFNα treatment response were explored in the two cohorts. Among the 22 candidate SNPs of CXCR4, rs28367495 (T > C) was significantly linked to PegIFNα treatment response in both cohorts. In patients with more number of rs28367495 C allele, a higher rate of combined response (CR, defined as HBeAg seroconversion and HBV DNA level < 3.3 log10 IU/mL; P = 1.51 × 10-4), a lower mean hepatitis B surface antigen (HBsAg) level (P = 4.76 × 10-4), and a higher mean HBsAg decline (P = 3.88 × 10-4) at Week 72 were achieved. Moreover, a PGS integrating CXCR4_rs28367495 and five previously reported SNPs was strongly correlated with CR (P = 1.26 × 10-13), HBsAg level (P = 4.90 × 10-4), and HBsAg decline (P = 0.005) in all the patients of the two cohorts. CXCR4_rs28367495 is a promising indicator for predicting the responsiveness to PegIFNα treatment for HBeAg-positive CHB patients. The new PGS may further improve the prediction performance.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Humanos , Antivirales/uso terapéutico , Antivirales/farmacología , ADN Viral , Hepatitis B/tratamiento farmacológico , Antígenos e de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Interferón-alfa/uso terapéutico , Interferón-alfa/farmacología , Polietilenglicoles/uso terapéutico , Polietilenglicoles/farmacología , Receptores CXCR4/genética , Proteínas Recombinantes , Estudios Retrospectivos , Resultado del Tratamiento
12.
Acc Chem Res ; 56(1): 52-65, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36378327

RESUMEN

ConspectusHexagonal boron nitrides (h-BNs) are attractive two-dimensional (2D) nanomaterials that consist of alternating B and N atoms and layered honeycomb-like structures similar to graphene. They have exhibited unique properties and promising application potentials in the field of energy storage and transformation. Recent advances in utilizing h-BN as a metal-free catalyst in the oxidative dehydrogenation of propane have triggered broad interests in exploring h-BN in catalysis. However, h-BN-based materials as robust nanocatalysts in heterogeneous catalysis are still underexplored because of the limited methodologies capable of affording h-BN with controllable crystallinity, abundant porosity, high purity, and defect engineering, which played important roles in tuning their catalytic performance. In this Account, our recent progress in addressing the above issues will be highlighted, including the synthesis of high-quality h-BN-based nanomaterials via both bottom-up and top-down pathways and their catalytic utilization as metal-free catalysts or as supports to tune the interfacial electronic properties on the metal nanoparticles (NPs). First, we will focus on the large-scale fabrication of h-BN nanosheets (h-BNNSs) with high crystallinity, improved surface area, satisfactory purity, and tunable defects. h-BN derived from the traditional approaches using boron trioxide and urea as the starting materials generally contains carbon/oxygen impurities and has low crystallinity. Several new strategies were developed to address the issues. Using bulk h-BN as the precursor via gas exfoliation in liquid nitrogen, single- or few-layered h-BNNS with abundant defects could be generated. Amorphous h-BN precursors could be converted to h-BN nanosheets with high crystallinity assisted by a magnesium metallic flux via a successive dissolution/precipitation/crystallization procedure. The as-fabricated h-BNNS featured high crystallinity and purity as well as abundant porosity. An ionothermal metathesis procedure was developed using inorganic molten salts (NaNH2 and NaBH4) as the precursors. The h-BN scaffolds could be produced on a large scale with high yield, and the as-afforded materials possessed high purity and crystallinity. Second, utilization of the as-prepared h-BN library as metal-free catalysts in dehydrogenation and hydrogenation reactions will be summarized, in which they exhibited enhanced catalytic activity over the counterparts from the previous synthesis method. Third, the interface modulation between metal NPs with the as-prepared defects' abundant h-BN support will be highlighted. The h-BN-based strong metal-support interaction (SMSI) nanocatalysts were constructed without involving reducible metal oxides via the ionothermal procedure we developed by deploying specific inorganic metal salts, acting as robust nanocatalysts in CO oxidation. Under conditions simulated for practical exhaust systems, promising catalytic efficiency together with high thermal stability and sintering resistance was achieved. Across all of these examples, unique insights into structures, defects, and interfaces that emerge from in-depth characterization through microscopy, spectroscopy, and diffraction will be highlighted.

13.
Chemistry ; 30(48): e202402137, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38924754

RESUMEN

A supramolecular complexation approach is developed to improve the CO2 chemisorption performance of solvent-lean amine sorbents. Operando spectroscopy techniques reveal the formation of carbamic acid in the presence of a crown ether. The reaction pathway is confirmed by theoretical simulation, in which the crown ether acts as a proton acceptor and shuttle to drive the formation and stabilization of carbamic acid. Improved CO2 capacity and diminished energy consumption in sorbent regeneration are achieved.

14.
J Chem Inf Model ; 64(8): 3222-3236, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38498003

RESUMEN

Liver microsomal stability, a crucial aspect of metabolic stability, significantly impacts practical drug discovery. However, current models for predicting liver microsomal stability are based on limited molecular information from a single species. To address this limitation, we constructed the largest public database of compounds from three common species: human, rat, and mouse. Subsequently, we developed a series of classification models using both traditional descriptor-based and classic graph-based machine learning (ML) algorithms. Remarkably, the best-performing models for the three species achieved Matthews correlation coefficients (MCCs) of 0.616, 0.603, and 0.574, respectively, on the test set. Furthermore, through the construction of consensus models based on these individual models, we have demonstrated their superior predictive performance in comparison with the existing models of the same type. To explore the similarities and differences in the properties of liver microsomal stability among multispecies molecules, we conducted preliminary interpretative explorations using the Shapley additive explanations (SHAP) and atom heatmap approaches for the models and misclassified molecules. Additionally, we further investigated representative structural modifications and substructures that decrease the liver microsomal stability in different species using the matched molecule pair analysis (MMPA) method and substructure extraction techniques. The established prediction models, along with insightful interpretation information regarding liver microsomal stability, will significantly contribute to enhancing the efficiency of exploring practical drugs for development.


Asunto(s)
Inteligencia Artificial , Microsomas Hepáticos , Microsomas Hepáticos/metabolismo , Animales , Ratones , Ratas , Humanos , Aprendizaje Automático , Descubrimiento de Drogas/métodos , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/química
15.
Metab Brain Dis ; 39(5): 941-952, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38801506

RESUMEN

Diabetic cognitive impairment is a common complication in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid that has been shown to have neuroprotective effects against diabetes. This study aimed to investigate the effect of BBR on the gray and white matter of the brain by using magnetic resonance imaging (MRI) and to explore the underlying mechanisms. The study used diabetic db/db mice and administered BBR (50 and 100 mg/kg) intragastrically for twelve weeks. Morris water maze was applied to examine cognitive function. T2-weighted imaging (T2WI) was performed to assess brain atrophy, and diffusion tensor imaging (DTI) combined with fiber tracking was conducted to monitor the structural integrity of the white matter, followed by histological immunostaining. Furthermore, the protein expressions of the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT)/ glycogen synthase kinase-3ß (GSK-3ß) were detected. The results revealed that BBR significantly improved the spatial learning and memory of the db/db mice. T2WI exhibited ameliorated brain atrophy in the BBR-treated db/db mice, as evidenced by reduced ventricular volume accompanied by increased hippocampal volumes. DTI combined with fiber tracking revealed that BBR increased FA, fiber density and length in the corpus callosum/external capsule of the db/db mice. These imaging findings were confirmed by histological immunostaining. Notably, BBR significantly enhanced the protein levels of phosphorylated AKT at Ser473 and GSK-3ß at Ser9. Collectively, this study demonstrated that BBR significantly improved the cognitive function of the diabetic db/db mice through ameliorating brain atrophy and promoting white matter reorganization via AKT/GSK-3ß pathway.


Asunto(s)
Atrofia , Berberina , Encéfalo , Disfunción Cognitiva , Imagen por Resonancia Magnética , Sustancia Blanca , Animales , Berberina/farmacología , Berberina/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/diagnóstico por imagen , Atrofia/tratamiento farmacológico , Ratones , Masculino , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Imagen de Difusión Tensora , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta/metabolismo
16.
Nano Lett ; 23(16): 7470-7476, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37540493

RESUMEN

Hydrogen separation membranes are a critical component in the emerging hydrogen economy, offering an energy-efficient solution for the purification and production of hydrogen gas. Inspired by the recent discovery of monolayer covalent fullerene networks, here we show from concentration-gradient-driven molecular dynamics that quasi-square-latticed monolayer fullerene membranes provide the best pore size match, a unique funnel-shaped pore, and entropic selectivity. The integration of these attributes renders these membranes promising for separating H2 from larger gases such as CO2 and O2. The ultrathin membranes exhibit excellent hydrogen permeance as well as high selectivity for H2/CO2 and H2/O2 separations, surpassing the 2008 Robeson upper bounds by a large margin. The present work points toward a promising direction of using monolayer fullerene networks as membranes for high-permeance, selective hydrogen separation for processes such as water splitting.

17.
J Infect Dis ; 228(6): 694-703, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36932045

RESUMEN

BACKGROUND: Alpha kinase 1 (ALPK1) agonist has recently been reported to demonstrate anti-hepatitis B virus (HBV) efficacy via activating NF-κB signaling, which is crucial for maximizing interferon (IFN) responses. Here, we investigated the impact of ALPK1 on HBV replication and explored ALPK1 variants for predicting the response to pegylated IFN-α (PegIFN-α) treatment. METHODS: The potential anti-HBV effect of ALPK1 was evaluated in HBV-integrated and HBV-infected hepatoma cells. The potentially functional genetic variants of ALPK1 were screened out, and their correlations with PegIFN-α treatment response were assessed in 945 hepatitis B e antigen (HBeAg)-positive patients with chronic hepatitis B (CHB). RESULTS: We revealed that ALPK1 inhibited HBV replication in hepatocytes via activating the JAK-STAT pathway. ALPK1 overexpression improved the anti-HBV effect of IFN-α in cell models. A missense variant, rs35389530 (P660L), of ALPK1 was strongly associated with combined response (CR; namely, HBeAg seroconversion and HBV DNA level <3.3log10 IU/mL) to PegIFN-α treatment in patients with CHB (P = 2.12 × 10-6). Moreover, a polygenic score integrating ALPK1_rs35389530 and 2 additional genetic variants was further significantly associated with CR (Ptrend = 9.28 × 10-7), hepatitis B surface antigen (HBsAg) level (Ptrend = .0002), and HBsAg loss (Ptrend = .025). CONCLUSIONS: The anti-HBV effects of ALPK1 through activating JAK-STAT pathway provides a new perspective for CHB therapy. ALPK1_rs35389530 and polygenic score are potential biomarkers to predict PegIFN-α treatment response and may be used for optimizing CHB treatment.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Humanos , Virus de la Hepatitis B/genética , Antivirales/farmacología , Antivirales/uso terapéutico , Antígenos de Superficie de la Hepatitis B/uso terapéutico , Antígenos e de la Hepatitis B , Quinasas Janus/uso terapéutico , Factores de Transcripción STAT/uso terapéutico , Transducción de Señal , Interferón-alfa/farmacología , Interferón-alfa/uso terapéutico , ADN Viral , Polietilenglicoles/uso terapéutico , Replicación Viral , Resultado del Tratamiento
18.
Angew Chem Int Ed Engl ; 63(12): e202315628, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38079229

RESUMEN

The LiTaCl6 solid electrolyte has the lowest activation energy of ionic conduction at ambient conditions (0.165 eV), with a record high ionic conductivity for a ternary compound (11 mS cm-1 ). However, the mechanism has been unclear. We train machine-learning force fields (MLFF) on ab initio molecular dynamics (AIMD) data on-the-fly and perform MLFF MD simulations of AIMD quality up to the nanosecond scale at the experimental temperatures, which allows us to predict accurate activation energy for Li-ion diffusion (at 0.164 eV). Detailed analyses of trajectories and vibrational density of states show that the large-amplitude vibrations of Cl- ions in TaCl6 - enable the fast Li-ion transport by allowing dynamic breaking and reforming of Li-Cl bonds across the space in between the TaCl6 - octahedra. We term this process the dynamic-monkey-bar mechanism of superionic Li+ transport which could aid the development of new solid electrolytes for all-solid-state lithium batteries.

19.
Angew Chem Int Ed Engl ; 63(1): e202313389, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37906130

RESUMEN

Tuning the anionic site of catalyst supports can impact reaction pathways by creating active sites on the support or influencing metal-support interactions when using supported metal nanoparticles. This study focuses on CO2 hydrogenation over supported Cu nanoparticles, revealing a 3-fold increase in methanol yield when replacing oxygen anions with hydrides in the perovskite support (Cu/BaTiO2.8 H0.2 yields ~146 mg/h/gCu vs. Cu/BaTiO3 yields ~50 mg/h/gCu). The contrast suggests that significant roles are played by the support hydrides in the reaction. Temperature programmed reaction and isotopic labelling studies indicate that BaTiO2.8 H0.2 surface hydride species follow a Mars van Krevelen mechanism in CO2 hydrogenation, promoting methanol production. High-pressure steady-state isotopic transient kinetic analysis (SSITKA) studies suggest that Cu/BaTiO2.8 H0.2 possesses both a higher density and more active and selective sites for methanol production compared to Cu/BaTiO3 . An operando high-pressure diffuse reflectance infrared spectroscopy (DRIFTS)-SSITKA study shows that formate species are the major surface intermediates over both catalysts, and the subsequent hydrogenation steps of formate are likely rate-limiting. However, the catalytic reactivity of Cu/BaTiO2.8 H0.2 towards the formate species is much higher than Cu/BaTiO3 , likely due to the altered electronic structure of interface Cu sites by the hydrides in the support as validated by density functional theory (DFT) calculations.

20.
Angew Chem Int Ed Engl ; : e202410109, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234799

RESUMEN

Although gapped grain boundaries have often been observed in bulk and nanosized materials, and their crucial roles in some physical and chemical processes have been confirmed, their acquisition at ultrasmall nanoscale presents a significant challenge. To date, they had not been reported in metal nanoparticles smaller than 2 nm owing to the difficulty in characterization and the high instability of grain boundary (GB) atoms. Herein, we have successfully developed a synthesis method for producing a novel chiral nanocluster Au78(TBBT)40 (TBBT = 4-tert-butylphenylthiol) with a 26-atom gapped and rotated GB. This nanocluster was precisely characterized using single-crystal X-ray crystallography and mass spectrometry. Additionally, an offset atomic defect linked to the peripheral Au(TBBT)2 staple was found in the structure. Comparing it to similarly face-centered cubic-structured Au36(TBBT)24, Au44(TBBT)28, Au52(TBBT)32, Au92(TBBT)44, and ~5 nm nanocrystals, the bridging Au78(TBBT)40 nanocluster exhibits higher catalytic activity in the reduction of CO2 to CO. This enhanced activity is well interpreted using density functional theory calculations and X-ray photoelectron spectroscopy analysis, highlighting the influence of GBs and point defects on the properties of metal nanoclusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA