RESUMEN
Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.
Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Sialiltransferasas/genética , Animales , Homeostasis , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Moco/metabolismo , Sialiltransferasas/metabolismo , SimbiosisRESUMEN
mAbs to MHC class I (MHC-I) molecules have proved to be crucial reagents for tissue typing and fundamental studies of immune recognition. To augment our understanding of epitopic sites seen by a set of anti-MHC-I mAb, we determined X-ray crystal structures of four complexes of anti-MHC-I Fabs bound to peptide/MHC-I/ß2-microglobulin (pMHC-I). An anti-H2-Dd mAb, two anti-MHC-I α3 domain mAbs, and an anti-ß2-microglobulin mAb bind pMHC-I at sites consistent with earlier mutational and functional experiments, and the structures explain allelomorph specificity. Comparison of the experimentally determined structures with computationally derived models using AlphaFold Multimer showed that although predictions of the individual pMHC-I heterodimers were quite acceptable, the computational models failed to properly identify the docking sites of the mAb on pMHC-I. The experimental and predicted structures provide insight into strengths and weaknesses of purely computational approaches and suggest areas that merit additional attention.
Asunto(s)
Genes MHC Clase I , EpítoposRESUMEN
Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures.
Asunto(s)
Proteínas de Drosophila/química , Histonas/química , Nucleosomas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Drosophila melanogaster , Modelos Moleculares , Datos de Secuencia Molecular , Nucleosomas/fisiología , Unión ProteicaRESUMEN
The interferon gamma-inducible protein 16 (IFI16) and its murine homologous protein p204 function in non-sequence specific dsDNA sensing; however, the exact dsDNA recognition mechanisms of IFI16/p204, which harbour two HIN domains, remain unclear. In the present study, we determined crystal structures of p204 HINa and HINb domains, which are highly similar to those of other PYHIN family proteins. Moreover, we obtained the crystal structure of p204 HINab domain in complex with dsDNA and provided insights into the dsDNA binding mode. p204 HINab binds dsDNA mainly through α2 helix of HINa and HINb, and the linker between them, revealing a similar HIN:DNA binding mode. Both HINa and HINb are vital for HINab recognition of dsDNA, as confirmed by fluorescence polarization assays. Furthermore, a HINa dimerization interface was observed in structures of p204 HINa and HINab:dsDNA complex, which is involved in binding dsDNA. The linker between HINa and HINb reveals dynamic flexibility in solution and changes its direction at â¼90° angle in comparison with crystal structure of HINab:dsDNA complex. These structural information provide insights into the mechanism of DNA recognition by different HIN domains, and shed light on the unique roles of two HIN domains in activating the IFI16/p204 signaling pathway.
Asunto(s)
ADN/química , Proteínas Nucleares/química , Fosfoproteínas/química , Cristalografía por Rayos X , ADN/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Dominios Proteicos , Multimerización de ProteínaRESUMEN
Combating the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of new variants demands understanding of the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here, we report five X-ray crystal structures of sybodies (synthetic nanobodies) including those of binary and ternary complexes of Sb16-RBD, Sb45-RBD, Sb14-RBD-Sb68, and Sb45-RBD-Sb68, as well as unliganded Sb16. These structures reveal that Sb14, Sb16, and Sb45 bind the RBD at the angiotensin-converting enzyme 2 interface and that the Sb16 interaction is accompanied by a large conformational adjustment of complementarity-determining region 2. In contrast, Sb68 interacts at the periphery of the SARS-CoV-2 RBD-angiotensin-converting enzyme 2 interface. We also determined cryo-EM structures of Sb45 bound to the SARS-CoV-2 spike protein. Superposition of the X-ray structures of sybodies onto the trimeric spike protein cryo-EM map indicates that some sybodies may bind in both "up" and "down" configurations, but others may not. Differences in sybody recognition of several recently identified RBD variants are explained by these structures.
Asunto(s)
Complejo Antígeno-Anticuerpo , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , COVID-19/virología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Alineación de Secuencia , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
Histone variant H2A.Z-containing nucleosomes exist at most eukaryotic promoters and play important roles in gene transcription and genome stability. The multisubunit nucleosome-remodeling enzyme complex SWR1, conserved from yeast to mammals, catalyzes the ATP-dependent replacement of histone H2A in canonical nucleosomes with H2A.Z. How SWR1 catalyzes the replacement reaction is largely unknown. Here, we determined the crystal structure of the N-terminal region (599-627) of the catalytic subunit Swr1, termed Swr1-Z domain, in complex with the H2A.Z-H2B dimer at 1.78 Å resolution. The Swr1-Z domain forms a 310 helix and an irregular chain. A conserved LxxLF motif in the Swr1-Z 310 helix specifically recognizes the αC helix of H2A.Z. Our results show that the Swr1-Z domain can deliver the H2A.Z-H2B dimer to the DNA-(H3-H4)2 tetrasome to form the nucleosome by a histone chaperone mechanism.
Asunto(s)
Adenosina Trifosfatasas/química , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/fisiología , Secuencia de Aminoácidos , Ensamble y Desensamble de Cromatina/genética , Clonación Molecular , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Difracción de Rayos XRESUMEN
Recognition of foreign and dysregulated antigens by the cellular innate and adaptive immune systems is in large part dependent on the cell surface display of peptide/MHC (pMHC) complexes. The formation of such complexes requires the generation of antigenic peptides, proper folding of MHC molecules, loading of peptides onto MHC molecules, glycosylation, and transport to the plasma membrane. This complex series of biosynthetic, biochemical, and cell biological reactions is known as "antigen processing and presentation". Here, we summarize recent work, focused on the structural and functional characterization of the key MHC-I-dedicated chaperones, tapasin, and TAPBPR. The mechanisms reflect the ability of conformationally flexible molecules to adapt to their ligands, and are comparable to similar processes that are exploited in peptide antigen loading in the MHC-II pathway.
Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I/inmunología , Péptidos/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase II/química , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/inmunología , Proteínas de la Membrana/química , Proteínas de la Membrana/inmunología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/inmunología , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/inmunología , Péptidos/química , Conformación ProteicaRESUMEN
Recognition of DNA by the innate immune system is central to antiviral and antibacterial defenses, as well as an important contributor to autoimmune diseases involving self DNA. AIM2 (absent in melanoma 2) and IFI16 (interferon-inducible protein 16) have been identified as DNA receptors that induce inflammasome formation and interferon production, respectively. Here we present the crystal structures of their HIN domains in complex with double-stranded (ds) DNA. Non-sequence-specific DNA recognition is accomplished through electrostatic attraction between the positively charged HIN domain residues and the dsDNA sugar-phosphate backbone. An intramolecular complex of the AIM2 Pyrin and HIN domains in an autoinhibited state is liberated by DNA binding, which may facilitate the assembly of inflammasomes along the DNA staircase. These findings provide mechanistic insights into dsDNA as the activation trigger and oligomerization platform for the assembly of large innate signaling complexes such as the inflammasomes.
Asunto(s)
ADN Forma B/metabolismo , Proteínas de Unión al ADN/química , Inflamasomas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Secuencia de Aminoácidos , Línea Celular , Cristalografía por Rayos X , ADN Forma B/química , ADN Forma B/inmunología , Humanos , Inmunidad Innata , Inflamasomas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Transducción de SeñalRESUMEN
Despite efforts to develop effective treatments and vaccines, Mycobacterium tuberculosis (Mtb), particularly pulmonary Mtb, continues to provide major health challenges worldwide. To improve immunization against the persistent health challenge of Mtb infection, we have studied the CD8+ T cell response to Bacillus Calmette-Guérin (BCG) and recombinant BCG (rBCG) in mice. Here, we generated CD8+ T cells with an rBCG-based vaccine encoding the Ag85B protein of M. kansasii, termed rBCG-Mkan85B, followed by boosting with plasmid DNA expressing the Ag85B gene (DNA-Mkan85B). We identified two MHC-I (H2-Kd )-restricted epitopes that induce cross-reactive responses to Mtb and other related mycobacteria in both BALB/c (H2d ) and CB6F1 (H2b/d ) mice. The H2-Kd -restricted peptide epitopes elicited polyfunctional CD8+ T cell responses that were also highly cross-reactive with those of other proteins of the Ag85 complex. Tetramer staining indicated that the two H2-Kd -restricted epitopes elicit distinct CD8+ T cell populations, a result explained by the X-ray structure of the two peptide/H2-Kd complexes. These results suggest that rBCG-Mkan85B vector-based immunization and DNA-Mkan85B boost may enhance CD8+ T cell response to Mtb, and might help to overcome the limited effectiveness of the current BCG in eliciting tuberculosis immunity.
Asunto(s)
Aciltransferasas/inmunología , Antígenos Bacterianos/inmunología , Vacuna BCG/inmunología , Proteínas Bacterianas/inmunología , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Tuberculosis/inmunología , Vacunas de ADN/inmunología , Secuencia de Aminoácidos , Animales , Epítopos/inmunología , Femenino , Inmunización/métodos , Inmunización Secundaria/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/microbiología , Vacunación/métodosRESUMEN
Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex.
Asunto(s)
Regulación Alostérica , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Antígenos de Histocompatibilidad Clase I/química , Humanos , Inmunoglobulinas/química , Proteínas de la Membrana/química , Péptidos/química , Conformación ProteicaRESUMEN
Unlike cytosolic processing and presentation of viral Ags by virus-infected cells, Ags first expressed in infected nonprofessional APCs, such as CD4+ T cells in the case of HIV, are taken up by dendritic cells and cross-presented. This generally requires entry through the endocytic pathway, where endosomal proteases have first access for processing. Thus, understanding virus escape during cross-presentation requires an understanding of resistance to endosomal proteases, such as cathepsin S (CatS). We have modified HIV-1MN gp120 by mutating a key CatS cleavage site (Thr322Thr323) in the V3 loop of the immunodominant epitope IGPGRAFYTT to IGPGRAFYVV to prevent digestion. We found this mutation to facilitate cross-presentation and provide evidence from MHC binding and X-ray crystallographic structural studies that this results from preservation of the epitope rather than an increased epitope affinity for the MHC class I molecule. In contrast, when the protein is expressed by a vaccinia virus in the cytosol, the wild-type protein is immunogenic without this mutation. These proof-of-concept results show that a virus like HIV, infecting predominantly nonprofessional presenting cells, can escape T cell recognition by incorporating a CatS cleavage site that leads to destruction of an immunodominant epitope when the Ag undergoes endosomal cross-presentation.
Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/inmunología , Reactividad Cruzada/inmunología , Infecciones por VIH/inmunología , VIH/inmunología , Evasión Inmune/inmunología , Péptidos/inmunología , Animales , Catepsinas/inmunología , Células Dendríticas/inmunología , Epítopos de Linfocito T/inmunología , Células HEK293 , Proteína gp120 de Envoltorio del VIH/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Ratones , Ratones Endogámicos BALB C , Virus Vaccinia/inmunologíaRESUMEN
Major histocompatibility class I (MHC-I) molecules bind peptides derived from cellular synthesis and display them at the cell surface for recognition by receptors on T lymphocytes (TCR) or natural killer (NK) cells. Such recognition provides a crucial step in autoimmunity, identification of bacterial and viral pathogens, and anti-tumor responses. Understanding the mechanism by which such antigenic peptides in the ER are loaded and exchanged for higher affinity peptides onto MHC molecules has recently been clarified by cryo-EM and X-ray studies of the multimolecular peptide loading complex (PLC) and a unimolecular tapasin-like chaperone designated TAPBPR. Insights from these structural studies and complementary solution NMR experiments provide a basis for understanding mechanisms related to immune antigen presentation.
Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Chaperonas Moleculares/metabolismo , Péptidos/inmunología , Chaperonas Moleculares/inmunología , Péptidos/metabolismoRESUMEN
Molecules encoded by the Major Histocompatibility Complex (MHC) bind self or foreign peptides and display these at the cell surface for recognition by receptors on T lymphocytes (designated T cell receptors-TCR) or on natural killer (NK) cells. These ligand/receptor interactions govern T cell and NK cell development as well as activation of T memory and effector cells. Such cells participate in immunological processes that regulate immunity to various pathogens, resistance and susceptibility to cancer, and autoimmunity. The past few decades have witnessed the accumulation of a huge knowledge base of the molecular structures of MHC molecules bound to numerous peptides, of TCRs with specificity for many different peptide/MHC (pMHC) complexes, of NK cell receptors (NKR), of MHC-like viral immunoevasins, and of pMHC/TCR and pMHC/NKR complexes. This chapter reviews the structural principles that govern peptide/MHC (pMHC), pMHC/TCR, and pMHC/NKR interactions, for both MHC class I (MHC-I) and MHC class II (MHC-II) molecules. In addition, we discuss the structures of several representative MHC-like molecules. These include host molecules that have distinct biological functions, as well as virus-encoded molecules that contribute to the evasion of the immune response.
Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Complejo Mayor de Histocompatibilidad , Receptores de Antígenos de Linfocitos T , Linfocitos T , Inmunidad Adaptativa/inmunología , Animales , Humanos , Inmunidad Innata/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Células Asesinas Naturales/química , Receptores de Células Asesinas Naturales/inmunología , Linfocitos T/inmunologíaRESUMEN
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.
Asunto(s)
Presentación de Antígeno , Antígeno HLA-A2/inmunología , Inmunoglobulinas/inmunología , Proteínas de la Membrana/inmunología , Péptidos/inmunología , Animales , Línea Celular , Drosophila melanogaster , Antígeno HLA-A2/genética , Humanos , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Péptidos/genéticaRESUMEN
The Toll/IL-1 receptor (TIR) domains are crucial signaling modules during innate immune responses involving the Toll-like receptors (TLRs) and IL-1 receptor (IL-1R). Myeloid differential factor 88 (MyD88) is a central TIR domain-containing adapter molecule responsible for nearly all TLR-mediated signaling and is targeted by a TIR domain-containing protein C (TcpC) from virulent uropathogenic Escherichia coli, a common human pathogen. The mechanism of such molecular antagonism has remained elusive. We present the crystal structure of the MyD88 TIR domain with distinct loop conformations that underscore the functional specialization of the adapter, receptor, and microbial TIR domains. Our structural analyses shed light on the genetic mutations at these loops as well as the Poc site. We demonstrate that TcpC directly associates with MyD88 and TLR4 through its predicted DD and BB loops to impair the TLR-induced cytokine induction. Furthermore, NMR titration experiments identify the unique CD, DE, and EE loops from MyD88 at the TcpC-interacting surface, suggesting that TcpC specifically engages these MyD88 structural elements for immune suppression. These findings thus provide a molecular basis for the subversion of TLR signaling by the uropathogenic E. coli virulence factor TcpC and furnish a framework for the design of novel therapeutic agents that modulate immune activation.
Asunto(s)
Proteínas de Escherichia coli/inmunología , Escherichia coli/inmunología , Inmunidad Innata/inmunología , Modelos Moleculares , Factor 88 de Diferenciación Mieloide/inmunología , Conformación Proteica , Transducción de Señal/inmunología , Factores de Virulencia/inmunología , Cristalografía , Humanos , Luciferasas , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Mutación/genética , Factor 88 de Diferenciación Mieloide/química , Factor 88 de Diferenciación Mieloide/genética , Receptores de Interleucina-1/inmunología , Receptores Toll-Like/inmunologíaRESUMEN
The Toll/IL-1 receptor (TIR) domains are crucial innate immune signaling modules. Microbial TIR domain-containing proteins inhibit Toll-like receptor (TLR) signaling through molecular mimicry. The TIR domain-containing protein TcpB from Brucella inhibits TLR signaling through interaction with host adaptor proteins TIRAP/Mal and MyD88. To characterize the microbial mimicry of host proteins, we have determined the X-ray crystal structures of the TIR domains from the Brucella protein TcpB and the host adaptor protein TIRAP. We have further characterized homotypic interactions of TcpB using hydrogen/deuterium exchange mass spectrometry and heterotypic TcpB and TIRAP interaction by co-immunoprecipitation and NF-κB reporter assays. The crystal structure of the TcpB TIR domain reveals the microtubule-binding site encompassing the BB loop as well as a symmetrical dimer mediated by the DD and EE loops. This dimerization interface is validated by peptide mapping through hydrogen/deuterium exchange mass spectrometry. The human TIRAP TIR domain crystal structure reveals a unique N-terminal TIR domain fold containing a disulfide bond formed by Cys(89) and Cys(134). A comparison between the TcpB and TIRAP crystal structures reveals substantial conformational differences in the region that encompasses the BB loop. These findings underscore the similarities and differences in the molecular features found in the microbial and host TIR domains, which suggests mechanisms of bacterial mimicry of host signaling adaptor proteins, such as TIRAP.
Asunto(s)
Proteínas Bacterianas/química , Glicoproteínas de Membrana/química , Estructura Terciaria de Proteína , Receptores de Interleucina-1/química , Factores de Virulencia/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Brucella melitensis/genética , Brucella melitensis/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Imitación Molecular , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Receptores Toll-Like/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
BACKGROUND: AIM2 binds dsDNA and associates with ASC through their PYDs to form an inflammasome. RESULTS: The AIM2 PYD structure illustrates distinct charge distribution and a unique hydrophobic patch. CONCLUSION: The AIM2 PYD may bind the ASC PYD and the AIM2 HIN domain through overlapping surface. SIGNIFICANCE: These findings provide insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. Absent in melanoma 2 (AIM2) is a cytosolic double-stranded (dsDNA) sensor essential for innate immune responses against DNA viruses and bacteria such as Francisella and Listeria. Upon dsDNA engagement, the AIM2 amino-terminal pyrin domain (PYD) is responsible for downstream signaling to the adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) through homotypic PYD-PYD interactions and the assembly of an inflammasome. Toward a better understanding of the AIM2 signaling mechanism, we determined the crystal structure of the human AIM2 PYD. The structure reveals a death domain fold with a short α3 helix that is buttressed by a highly conserved lysine residue at the α2 helix, which may stabilize the α3 helix for potential interaction with partner domains. The surface of the AIM2 PYD exhibits distinct charge distribution with highly acidic α1-α2 helices and highly basic α5-α6 helices. A prominent solvent-exposed hydrophobic patch formed by residues Phe-27 and Phe-28 at the α2 helix resembles a similar surface involved in the death effector domain homotypic interactions. Docking studies suggest that the AIM2 PYD may bind the AIM2 hematopoietic interferon-inducible nuclear (HIN) domain or ASC PYD using overlapping surface near the α2 helix. This may ensure that AIM2 interacts with the downstream adapter ASC only upon release of the autoinhibition by the dsDNA ligand. Our work thus unveils novel structural features of the AIM2 PYD and provides insights into the potential mechanisms of the PYD-HIN and PYD-PYD interactions important for AIM2 autoinhibition and inflammasome assembly.
Asunto(s)
Inflamasomas/química , Proteínas Nucleares/química , Multimerización de Proteína , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Proteínas del Citoesqueleto/química , Proteínas de Unión al ADN , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , Pirina , Homología Estructural de Proteína , Propiedades de SuperficieRESUMEN
The crystal structures of protein-nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein-nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H-RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.
Asunto(s)
Proteínas Bacterianas/química , ADN de Cadena Simple/química , Escherichia coli/química , Oligonucleótidos/química , ARN/química , Ribonucleasa H/química , Selenio/química , Proteínas Bacterianas/genética , Emparejamiento Base , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/genética , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribonucleasa H/genéticaRESUMEN
This work focuses on molecules that are encoded by the major histocompatibility complex (MHC) and that bind self-, foreign- or tumor-derived peptides and display these at the cell surface for recognition by receptors on T lymphocytes (T cell receptors, TCR) and natural killer (NK) cells. The past few decades have accumulated a vast knowledge base of the structures of MHC molecules and the complexes of MHC/TCR with specificity for many different peptides. In recent years, the structures of MHC-I molecules complexed with chaperones that assist in peptide loading have been revealed by X-ray crystallography and cryogenic electron microscopy. These structures have been further studied using mutagenesis, molecular dynamics and NMR approaches. This review summarizes the current structures and dynamic principles that govern peptide exchange as these relate to the process of antigen presentation.
Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I , Chaperonas Moleculares , Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/química , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/inmunología , Péptidos/inmunología , Péptidos/química , Péptidos/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/química , Cristalografía por Rayos XRESUMEN
Presently, multi-label classification algorithms are mainly based on positive and negative logical labels, which have achieved good results. However, logical labeling inevitably leads to the label misclassification problem. In addition, missing labels are common in multi-label datasets. Recovering missing labels and constructing soft labels that reflect the mapping relationship between instances and labels is a difficult task. Most existing algorithms can only solve one of these problems. Based on this, this paper proposes a soft-label recover based label-specific features learning (SLR-LSF) to solve the above problems simultaneously. Firstly, the information entropy is used to calculate the confidence matrix between labels, and the membership degree of soft labels is obtained by combining the label density information. Secondly, the membership degree and confidence matrix are combined to construct soft labels, and this process not only solves the problem of missing labels but also obtains soft labels with richer semantic information. Finally, in the process of learning specific label features for soft labels. The local smoothness of the labels learned through stream regularization is complemented by the global label correlation, thus improving the classification performance of the algorithm. To demonstrate the effectiveness of the proposed algorithm, we conduct comprehensive experiments on several datasets.