Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Acoust Soc Am ; 148(6): 3762, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33379910

RESUMEN

Matched filter (MF) and conventional beamforming (CBF) are widely used in active sonar; the performance of the former (temporal resolution) is limited by the signal bandwidth, and that of the latter (angular resolution) is limited by the array aperture. Previous work has shown that angular resolution can be significantly improved by deconvolving the CBF outputs. In this paper, deconvolution is extended to the time domain by deconvolving the MF outputs, and a high-resolution two-dimensional deconvolution method is proposed to simultaneously improve the temporal and angular resolution. Numerical simulations and experimental tank data show that angular resolutions are improved 26 times, and temporal resolutions are improved 10 times compared with the conventional MF and CBF methods. Reverberations are much suppressed to allow target echoes to be detected from the received time series data.

2.
Sensors (Basel) ; 18(4)2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642637

RESUMEN

A coherent-noncoherent joint processing framework is proposed for active sonar to combine diversity gain and beamforming gain for detection of a small target in shallow water environments. Sonar utilizes widely-spaced arrays to sense environments and illuminate a target of interest from multiple angles. Meanwhile, it exploits spatial diversity for time-reversal focusing to suppress reverberation, mainly strong bottom reverberation. For enhancement of robustness of time-reversal focusing, an adaptive iterative strategy is utilized in the processing framework. A probing signal is firstly transmitted and echoes of a likely target are utilized as steering vectors for the second transmission. With spatial diversity, target bearing and range are estimated using a broadband signal model. Numerical simulations show that the novel sonar outperforms the traditional phased-array sonar due to benefits of spatial diversity. The effectiveness of the proposed framework has been validated by localization of a small target in at-lake experiments.

3.
Sensors (Basel) ; 17(1)2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-28085071

RESUMEN

A broadband signal model is proposed for a distributed multiple-input multiple-output (MIMO) sonar system consisting of two transmitters and a receiving linear array. Transmitters are widely separated to illuminate the different aspects of an extended target of interest. The beamforming technique is utilized at the reception ends for enhancement of weak target echoes. A MIMO detector is designed with the estimated target position parameters within the general likelihood rate test (GLRT) framework. For the high signal-to-noise ratio case, the detection performance of the MIMO system is better than that of the phased-array system in the numerical simulations and the tank experiments. The robustness of the distributed phased-MIMO sonar system is further demonstrated in localization of a target in at-lake experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA