Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pain ; 20: 17448069241252654, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658141

RESUMEN

Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. Mitochondrial-derived peptide (MOTS-c), a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. We found that endogenous MOTS-c levels in plasma and spinal dorsal horn were significantly lower in STZ-treated mice than in control animals. Accordingly, MOTS-c treatment significantly improves STZ-induced weight loss, elevation of blood glucose, mechanical allodynia, and thermal hyperalgesia; however, these effects were blocked by dorsomorphin, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor. In addition, MOTS-c treatment significantly enhanced AMPKα1/2 phosphorylation and PGC-1α expression in the lumbar spinal cord of PDN mice. Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.


Asunto(s)
Neuropatías Diabéticas , Hiperalgesia , Mitocondrias , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Estreptozocina , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/patología , Masculino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Péptidos/farmacología , Ratones , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Microglía/efectos de los fármacos , Microglía/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38716540

RESUMEN

Bone cancer pain (BCP), due to cancer bone metastasis and bone destruction, is a common symptom of tumors, including breast, prostate, and lung tumors. Patients often experience severe pain without effective treatment. Here, using a mouse model of bone cancer, we report that MOTS-c, a novel mitochondrial-derived peptide, confers remarkable protection against cancer pain and bone destruction. Briefly, we find that the plasma level of endogenous MOTS-c is significantly lower in the BCP group than in the sham group. Accordingly, intraperitoneal administration of MOTS-c robustly attenuates bone cancer-induced pain. These effects are blocked by compound C, an AMPK inhibitor. Furthermore, MOTS-c treatment significantly enhances AMPKα 1/2 phosphorylation. Interestingly, mechanical studies indicate that at the spinal cord level, MOTS-c relieves pain by restoring mitochondrial biogenesis, suppressing microglial activation, and decreasing the production of inflammatory factors, which directly contribute to neuronal modulation. However, in the periphery, MOTS-c protects against local bone destruction by modulating osteoclast and immune cell function in the tumor microenvironment, providing long-term relief from cancer pain. Additionally, we find that chronic administration of MOTS-c has little effect on liver, renal, lipid or cardiac function in mice. In conclusion, MOTS-c improves BCP through peripheral and central synergistic effects on nociceptors, immune cells, and osteoclasts, providing a pharmacological and biological rationale for the development of mitochondrial peptide-based therapeutic agents for cancer-induced pain.

3.
Nano Lett ; 23(6): 2137-2147, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36881967

RESUMEN

We have developed tailor-designed mesoporous silica nanoparticles (MSNPs) specifically for delivering mRNA. Our unique assembly protocol involves premixing mRNA with a cationic polymer and then electrostatically binding it to the MSNP surface. Since the key physicochemical parameters of MSNPs could influence the biological outcome, we also investigated the roles of size, porosity, surface topology, and aspect ratio on the mRNA delivery. These efforts allow us to identify the best-performing carrier, which was able to achieve efficient cellular uptake and intracellular escape while delivering a luciferase mRNA in mice. The optimized carrier remained stable and active for at least 7 days after being stored at 4 °C and was able to enable tissue-specific mRNA expression, particularly in the pancreas and mesentery after intraperitoneal injection. The optimized carrier was further manufactured in a larger batch size and found to be equally efficient in delivering mRNA in mice and rats, without any obvious toxicity.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Animales , Ratones , Ratas , Porosidad
4.
J Nanobiotechnology ; 21(1): 303, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37641124

RESUMEN

Skeletal muscle disease severity can often progress asymmetrically across muscle groups and heterogeneously within tissues. An example is Duchenne Muscular Dystrophy (DMD) in which lack of dystrophin results in devastating skeletal muscle wasting in some muscles whereas others are spared or undergo hypertrophy. An efficient, non-invasive approach to identify sites of asymmetry and degenerative lesions could enable better patient monitoring and therapeutic targeting of disease. In this study, we utilized a versatile intravenously injectable mesoporous silica nanoparticle (MSNP) based nanocarrier system to explore mechanisms of biodistribution in skeletal muscle of mdx mouse models of DMD including wildtype, dystrophic, and severely dystrophic mice. Moreover, MSNPs could be imaged in live mice and whole muscle tissues enabling investigation of how biodistribution is altered by different types of muscle pathology such as inflammation or fibrosis. We found MSNPs were tenfold more likely to aggregate within select mdx muscles relative to wild type, such as gastrocnemius and quadriceps. This was accompanied by decreased biodistribution in off-target organs. We found the greatest factor affecting preferential delivery was the regenerative state of the dystrophic skeletal muscle with the highest MSNP abundance coinciding with the regions showing the highest level of embryonic myosin staining and intramuscular macrophage uptake. To demonstrate, muscle regeneration regulated MSNP distribution, we experimentally induced regeneration using barium chloride which resulted in a threefold increase of intravenously injected MSNPs to sites of regeneration 7 days after injury. These discoveries provide the first evidence that nanoparticles have selective biodistribution to skeletal muscle in DMD to areas of active regeneration and that nanoparticles could enable diagnostic and selective drug delivery in DMD skeletal muscle.


Asunto(s)
Distrofina , Músculo Esquelético , Animales , Ratones , Distribución Tisular , Ratones Endogámicos mdx , Regeneración
5.
Cell Biol Int ; 46(9): 1510-1518, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35670241

RESUMEN

The blood brain barrier (BBB) is a protective border that prevents noxious substances from gaining access to the central nervous system (CNS). CXCL13 is a chemokine from the CXC chemokine family, which has been shown to destroy the barrier function of umbilical vein endothelial cells with its receptor CXCR5. Here, we aimed to investigate the role of CXCL13/CXCR5 signaling axis in BBB. The invasive ability of bEnd.3 cells was determined by the Transwell invasion assay. The barrier integrity of bEnd.3 cells was assessed by detecting trans-endothelial electrical resistance, the permeability to fluorescein isothiocyanate-dextran, and the expression levels of the tight junction protein E-cadherin. Lipopolysaccharide (LPS)-activated microglia promoted invasion and barrier dysfunction, and upregulated CXCR5 and p-p38 expression levels in cocultured bEnd.3 cells. However, the effects of activated microglia were alleviated by knocking down CXCR5 in cocultured bEnd.3 cells. Furthermore, recombinant CXCL13 promoted invasion and barrier dysfunction, and upregulated the expression levels of p-p38 in bEnd.3 cells; however, its effects were abolished by treating bEnd.3 cells with the p38 inhibitor SB203580. Our data tentatively demonstrated that LPS-activated microglial cells may promote invasion and barrier dysfunction in bEnd.3 cells by regulating the CXCL13/CXCR5 axis and p38 signaling.


Asunto(s)
Barrera Hematoencefálica , Quimiocina CXCL13 , Células Endoteliales , Microglía , Receptores CXCR5 , Animales , Encéfalo/metabolismo , Quimiocina CXCL13/metabolismo , Células Endoteliales/metabolismo , Lipopolisacáridos , Ratones , Microglía/metabolismo , Receptores CXCR5/metabolismo
6.
J Environ Sci (China) ; 111: 429-441, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34949371

RESUMEN

Airborne fine particulate matter (PM2.5) is known to cause respiratory inflammation such as chronic obstructive pulmonary disease and lung fibrosis. NLRP3 inflammasome activation has been implicated in these diseases; however, due to the complexity in PM2.5 compositions, it is difficult to differentiate the roles of the components in triggering this pathway. We collected eight real-life PM2.5 samples for a comparative analysis of their effects on NLRP3 inflammasome activation and lung fibrosis. In vitro assays showed that although the PM2.5 particles did not induce significant cytotoxicity at the dose range of 12.5 to 100 µg/mL, they induced potent TNF-α and IL-1ß production in PMA differentiated THP-1 human macrophages and TGF-ß1 production in BEAS-2B human bronchial epithelial cells. At the dose of 100 µg/mL, PM2.5 induced NLRP3 inflammasome activation by inducing lysosomal damage and cathepsin B release, leading to IL-1ß production. This was confirmed by using NLRP3- and ASC-deficient cells as well as a cathepsin B inhibitor, ca-074 ME. Administration of PM2.5 via oropharyngeal aspiration at 2 mg/kg induced significant TGF-ß1 production in the bronchoalveolar lavage fluid and collagen deposition in the lung at 21 days post-exposure, suggesting PM2.5 has the potential to induce pulmonary fibrosis. The ranking of in vitro IL-1ß production correlates well with the in vivo total cell count, TGF-ß1 production, and collagen deposition. In summary, we demonstrate that the PM2.5 is capable of inducing NLRP3 inflammasome activation, which triggers a series of cellular responses in the lung to induce fibrosis.


Asunto(s)
Contaminación del Aire , Proteína con Dominio Pirina 3 de la Familia NLR , Material Particulado , Contaminación del Aire/efectos adversos , Línea Celular , Fibrosis , Humanos , Inflamasomas , Interleucina-1beta , Pulmón , Material Particulado/toxicidad , Células THP-1
7.
Small ; 17(38): e2102545, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34363305

RESUMEN

Nanocellulose including cellulose nanocrystal (CNC) and cellulose nanofiber (CNF) has attracted much attention due to its exceptional mechanical, chemical, and rheological properties. Although considered biocompatible, recent reports have demonstrated nanocellulose can be hazardous, including serving as drug carriers that accumulate in the liver. However, the nanocellulose effects on liver cells, including Kupffer cells (KCs) and hepatocytes are unclear. Here, the toxicity of nanocellulose with different lengths is compared, including the shorter CNCs (CNC-1, CNC-2, and CNC-3) and longer CNF (CNF-1 and CNF-2), to liver cells. While all CNCs triggered significant cytotoxicity in KCs and only CNC-2 induced toxicity to hepatocytes, CNFs failed to induce significant cytotoxicity due to their minimal cellular uptake. The phagocytosis of CNCs by KCs induced mitochondria ROS generation, caspase-3/7 activation, and apoptotic cell death as well as lysosomal damage, cathepsin B release, NLRP3 inflammasome and caspase-1 activation, and IL-1ß production. The cellular uptake of CNC-2 by hepatocytes is through clathrin-mediated endocytosis, and it induced the caspase-3/7-mediated apoptosis. CNC-2 shows the highest levels of uptake and cytotoxicity among CNCs. These results demonstrate the length-dependent mechanisms of toxicity on liver cells in a cell type-dependent fashion, providing information to safely use nanocellulose for biomedical applications.


Asunto(s)
Hepatocitos , Macrófagos del Hígado , Inflamasomas , Hígado , Macrófagos
8.
Small ; 17(14): e2005993, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33682329

RESUMEN

In this study a mesoporous silica nanoparticle (MSNP) based platform is developed for high-dose loading of a range of activated platinum (Pt) chemo agents that can be attached to the porous interior through the use of electrostatic and coordination chemistry under weak-basic pH conditions. In addition to the design feature for improving drug delivery, the MSNP can also be encapsulated in a coated lipid bilayer (silicasome), to improve the colloidal stability after intravenous (IV) injection. Improved pharmacokinetics and intratumor delivery of encapsulated activated oxaliplatin (1,2-diamminocyclohexane platinum(II) (DACHPt)) over free drug in an orthotopic Kras-derived pancreatic cancer (PDAC) model is demonstrated. Not only does IV injection of the DACHPt silicasome provide more efficacious cytotoxic tumor cell killing, but can also demonstrate that chemotherapy-induced cell death is accompanied by the features of immunogenic cell death (ICD) as well as a dramatic reduction in bone marrow toxicity. The added ICD features are reflected by calreticulin and high-mobility group box 1 expression, along with increased CD8+ /FoxP3+ T-cell ratios and evidence of perforin and granzyme B release at the tumor site. Subsequent performance of a survival experiment, demonstrates that the DACHPt silicasome generates a significant improvement in survival outcome, which can be extended by delayed administration of the anti-PD-1 antibody.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Preparaciones Farmacéuticas , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Inmunoterapia , Neoplasias Pancreáticas/tratamiento farmacológico , Platino (Metal)
9.
Small ; 17(25): e2101084, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34032006

RESUMEN

2D boron nitride (BN) and molybdenum disulfide (MoS2 ) materials are increasingly being used for applications due to novel chemical, electronic, and optical properties. Although generally considered biocompatible, recent data have shown that BN and MoS2 could potentially be hazardous under some biological conditions, for example, during, biodistribution of drug carriers or imaging agents to the liver. However, the effects of these 2D materials on liver cells such as Kupffer cells (KCs), liver sinusoidal endothelial cells, and hepatocytes, are unknown. Here, the toxicity of BN and MoS2 , dispersed in Pluronic F87 (designated BN-PF and MoS2 -PF) is compared with aggregated forms of these materials (BN-Agg and MoS2 -Agg) in liver cells. MoS2 induces dose-dependent cytotoxicity in KCs, but not other cell types, while the BN derivatives are non-toxic. The effect of MoS2 could be ascribed to nanosheet dissolution and the release of hexavalent Mo, capable of inducing mitochondrial reactive oxygen species generation and caspases 3/7-mediated apoptosis in KUP5 cells. In addition, the phagocytosis of MoS2 -Agg triggers an independent response pathway involving lysosomal damage, NLRP3 inflammasome activation, caspase-1 activation, IL-1ß, and IL-18 production. These findings demonstrate the importance of Mo release and the state of dispersion of MoS2 in impacting KC viability.


Asunto(s)
Células Endoteliales , Molibdeno , Compuestos de Boro , Disulfuros , Hepatocitos , Hígado , Molibdeno/toxicidad , Solubilidad , Distribución Tisular
10.
Small ; 16(21): e2000528, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32337854

RESUMEN

The mononuclear phagocyte system in the liver is a frequent target for nanoparticles (NPs). A toxicological profiling of metal-based NPs is performed in Kupffer cell (KC) and hepatocyte cell lines. Sixteen NPs are provided by the Nanomaterial Health Implications Research Consortium of the National Institute of Environmental Health Sciences to study the toxicological effects in KUP5 (KC) and Hepa 1-6 cells. Five NPs (Ag, CuO, ZnO, SiO2 , and V2 O5 ) exhibit cytotoxicity in both cell types, while SiO2 and V2 O5 induce IL-1ß production in KC. Ag, CuO, and ZnO induced caspase 3 generated apoptosis in both cell types is accompanied by ion shedding and generation of mitochondrial reactive oxygen species (ROS) in both cell types. However, the cell death response to SiO2 in KC differs by inducing pyroptosis as a result of potassium efflux, caspase 1 activation, NLRP3 inflammasome assembly, IL-1ß release, and cleavage of gasdermin-D. This releases pore-performing peptide fragments responsible for pyroptotic cell swelling. Interestingly, although V2 O5 induces IL-1ß release and delays caspase 1 activation by vanadium ion interference in membrane Na+ /K+ adenosine triphosphate (ATP)ase activity, the major cell death mechanism in KC (and Hepa 1-6) is caspase 3 mediated apoptosis. These findings improve the understanding of the mechanisms of metal-based engineered nanomaterial (ENM) toxicity in liver cells toward comprehensive safety evaluation.


Asunto(s)
Muerte Celular , Hepatocitos , Macrófagos del Hígado , Nanopartículas del Metal , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Hepatocitos/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Macrófagos del Hígado/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Ratones , Dióxido de Silicio/toxicidad
11.
Acta Pharmacol Sin ; 41(1): 1-9, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31554960

RESUMEN

Midbrain dopaminergic (DA) neurons are governed by an endogenous cholinergic system, originated in the mesopontine nuclei. Nicotine hijacks nicotinic acetylcholine receptors (nAChRs) and interferes with physiological function of the cholinergic system. In this review, we describe the anatomical organization of the cholinergic system and the key nAChR subtypes mediating cholinergic regulation of DA transmission and nicotine reward and dependence, in an effort to identify potential targets for smoking intervention. Cholinergic modulation of midbrain DA systems relies on topographic organization of mesopontine cholinergic projections, and activation of nAChRs in midbrain DA neurons. Previous studies have revealed that α4, α6, and ß2 subunit-containing nAChRs expressed in midbrain DA neurons and their terminals in the striatum regulate firings of midbrain DA neurons and activity-dependent dopamine release in the striatum. These nAChRs undergo modification upon chronic nicotine exposure. Clinical investigation has demonstrated that partial agonists of these receptors elevate the success rate of smoking cessation relative to placebo. However, further investigations are required to refine the drug targets to mitigate unpleasant side-effects.


Asunto(s)
Neuronas Colinérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Mesencéfalo/citología , Vías Nerviosas/efectos de los fármacos , Nicotina/farmacología , Receptores Nicotínicos/metabolismo , Tabaquismo/metabolismo , Animales , Neuronas Colinérgicas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Vías Nerviosas/metabolismo
12.
Small ; 15(42): e1901642, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31461215

RESUMEN

Nanocellulose is increasingly considered for applications; however, the fibrillar nature, crystalline phase, and surface reactivity of these high aspect ratio nanomaterials need to be considered for safe biomedical use. Here a comprehensive analysis of the impact of cellulose nanofibrils (CNF) and nanocrystals (CNC) is performed using materials provided by the Nanomaterial Health Implications Research Consortium of the National Institute of Environmental Health Sciences. An intermediary length of nanocrystals is also derived by acid hydrolysis. While all CNFs and CNCs are devoid of cytotoxicity, 210 and 280 nm fluorescein isothiocyanate (FITC)-labeled CNCs show higher cellular uptake than longer and shorter CNCs or CNFs. Moreover, CNCs in the 200-300 nm length scale are more likely to induce lysosomal damage, NLRP3 inflammasome activation, and IL-1ß production than CNFs. The pro-inflammatory effects of CNCs are correlated with higher crystallinity index, surface hydroxyl density, and reactive oxygen species generation. In addition, CNFs and CNCs can induce maturation of bone marrow-derived dendritic cells and CNCs (and to a lesser extent CNFs) are found to exert adjuvant effects in ovalbumin (OVA)-injected mice, particularly for 210 and 280 nm CNCs. All considered, the data demonstrate the importance of length scale, crystallinity, and surface reactivity in shaping the innate immune response to nanocellulose.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Celulosa/farmacología , Inflamación/patología , Nanoestructuras/química , Animales , Supervivencia Celular/efectos de los fármacos , Celulosa/ultraestructura , Cristalización , Células Dendríticas/metabolismo , Glutatión/metabolismo , Humanos , Hidrodinámica , Inmunidad Humoral/efectos de los fármacos , Inmunoglobulina G/biosíntesis , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nanopartículas/química , Nanopartículas/ultraestructura , Nanoestructuras/ultraestructura , Ovalbúmina/inmunología , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Electricidad Estática , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Células THP-1
13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(1): 89-94, 2017 01.
Artículo en Zh | MEDLINE | ID: mdl-30192486

RESUMEN

Due to the needs of industrial development, the different content and uncertain distribution of magnesite mineral lead to great difficulties in o determining its grade, therefore, we propose a combination of near-infrared spectroscopy and the ELM magnesite grade classification model. The model can achieve rapid classification of magnesite grade. Near infrared spectroscopy, considering that different types of H group in magnesite have different absorption degrees to near-infrared spectroscopy, is used to determine the composition and content of magnesite. It is simple, fast, accurate and efficient without destroying the sample. In this paper, we take magnesite 30 group from Yingkou City, Liaoning Province Dashiqiao for the study, collecting their magnesite NIR data samples at 30×973, using principal component analysis (PCA) for data dimensionality reduction process. The main element contribution rate is greater than 99.99% obtained characteristic variables of 10, established quantitative analysis ELM algorithm mathematical model, take 20 groups of samples as the training samples (including 6 super group, 14 groups non), 10 groups of samples for testing samples (including super grade4 groups, 6 groups non), ELM algorithm model hidden layer nodes selection 20. In order to further improve the classification performance, two kinds improved ELM algorithm models are proposed: conduct optimization selection ELM for the traditional ELM input weights and threshold using the circulation patterns and integrate integration-Featured ELM based on Featured ELM. And compare to which use the artificial method, chemical method and BP neural network model approach. The results showed that magnesite grade classification with the near-infrared spectroscopy and ELM model have a distinct advantage regardless of cost or time, and the accuracy rate can reach over 90%, which provides a new way to classify magnesite grade.

14.
Eur J Immunol ; 45(4): 999-1009, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25545618

RESUMEN

We have previously reported that adoptive transfer of tumor-draining lymph node (TDLN) B cells confers tumor regression in a spontaneous pulmonary metastasis mouse model of breast cancer. In this study, we identified IL-10-producing cells within these B cells, and found that IL-10 removal, either by using IL-10(-/-) TDLN B cells or by systemic neutralization of IL-10, significantly augmented the therapeutic efficacy of adoptively transferred TDLN B cells. Depletion of IL-10 in B-cell adoptive transfers significantly increased CTLs and B-cell activity of PBMCs and splenic cells in the recipient. Activated TDLN B cells express Fas ligand, which was further enhanced by coculture of these TDLN B cells with 4T1 tumor cells. Effector B cells killed tumor cells directly in vitro in an antigen specific and Fas ligand-dependent manner. Trafficking of TDLN B cells in vivo suggested that they were recruited to the tumor and lung as well as secondary lymphoid organs. These findings further define the biological function of antitumor effector B cells, which may offer alternative cellular therapies to cancer.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Proteína Ligando Fas/biosíntesis , Inmunoterapia Adoptiva , Interleucina-10/inmunología , Neoplasias/terapia , Linfocitos T Citotóxicos/inmunología , Animales , Subgrupos de Linfocitos B/trasplante , Línea Celular Tumoral , Movimiento Celular/inmunología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Proteína Ligando Fas/inmunología , Femenino , Interleucina-10/genética , Ganglios Linfáticos/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neoplasias/inmunología , Receptor fas/inmunología
15.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 44(2): 179-83, 2015 03.
Artículo en Zh | MEDLINE | ID: mdl-26038137

RESUMEN

OBJECTIVE: To evaluate the efficacy of imatinib mesylate (IM) for patients with newly diagnosed chronic myeloid leukemia (CML) and patients after failure of Recombinant Human interferon-α2b (IFN-α2b) therapy. METHODS: A total of 86 patients with CML in chronic-phase, including 61 newly diagnosed cases and 25 cases of IFN-α2b failure, who received IM at 400 mg daily were retrospectively analyzed. Conventional cytogenetic analysis of R-banding was used to detect chromosome abnormalities and real-time PCR was used to detect BCR-ABL fusion gene. RESULTS: 81.9% of newly diagnosed patients and 36.0% of IFN-α2b failure patients achieved partial cytogenetic response (PCyR) by 6 months. In addition, 86.9% of newly diagnosed patients and 68.0% of IFN-α2b failure patients achieved complete cytogenetic response (CCyR) in 24 months. There was significant difference between two groups (P<0.001). The median time achieved CCyR in newly diagnosed group and IFN-α2b failure group were 6 months and 15 months, respectively. Compared with newly diagnosed group, IFN-α2b failure group showed lower rate of complete molecular remission (CMR) (70.4% vs 40.0%, P=0.033). There are 14 patients (22.9%) in newly diagnosed patients with cytogenetic resistance, among whom 4 with primary cytogenetic resistance; while there were 14 patients (56.0%) in IFN-α2b failure group with cytogenetic resistance, all of whom with primary resistance. CONCLUSION: Compared with newly diagnosed patients, CML patients after failure of IFN-α2b therapy have a high rate of primary cytogenetic resistance and low response rate to IM.


Asunto(s)
Benzamidas/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Piperazinas/uso terapéutico , Pirimidinas/uso terapéutico , Humanos , Mesilato de Imatinib , Interferón-alfa/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Estudios Retrospectivos , Insuficiencia del Tratamiento , Resultado del Tratamiento
16.
Neurol Res ; 46(2): 165-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37899006

RESUMEN

BACKGROUND: Inflammatory pain is caused by damaged tissue or noxious stimuli, accompanied by the release of inflammatory mediators that often leads to severe hyperalgesia and allodynia with limited therapy options. Recently, a novel mitochondrial-derived peptide (named MOTS-c) was reported to regulate obesity, metabolic homeostasis and inflammatory response. The aim of this study was to investigate the effects of MOTS-c and its related regulatory mechanisms involved in inflammatory pain. METHODS: Male Kunming mice (8-10 weeks-old) were intraplantar injected with formalin, capsaicin, λ-Carrageenan and complete Freund adjuvant (CFA) to establish acute and chronic inflammatory pain. The effects of MOTS-c on the above inflammatory pain mice and its underlying mechanisms were examined by behavioral tests, quantitative polymerase chain reaction (qPCR), western blotting, enzyme linked immunosorbent assay (ELISA), immunohistochemistry (IHC) and immunofluorescence (IF). RESULTS: Behavioral experiments investigated the potential beneficial effects of MOTS-c on multiple acute and chronic inflammatory pain in mice. The results showed that MOTS-c treatment produced potent anti-allodynic effects in formalin-induced acute inflammatory pain, capsaicin-induced nocifensive behaviors and λ-Carrageenan/CFA-induced chronic inflammatory pain model. Further mechanistic studies revealed that central MOTS-c treatment significantly ameliorated CFA-evoked the release of inflammatory factors and activation of glial cells and neurons in the spinal dorsal horn. Moreover, peripheral MOTS-c treatment reduced CFA-evoked inflammatory responses in the surface structure of hindpaw skin, accompanied by inhibiting excitation of peripheral calcitonin gene-related peptide (CGRP) and P2X3 nociceptive neurons. CONCLUSIONS: The present study indicates that MOTS-c may serve as a promising therapeutic target for inflammatory pain.


Asunto(s)
Capsaicina , Dolor Crónico , Ratones , Masculino , Animales , Carragenina/toxicidad , Carragenina/uso terapéutico , Capsaicina/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hiperalgesia/metabolismo , Dolor Crónico/complicaciones , Adyuvante de Freund/toxicidad , Formaldehído/toxicidad , Formaldehído/uso terapéutico
17.
Biofabrication ; 16(4)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39008993

RESUMEN

Various anisotropic tissue structures exist in organisms, including muscle tissue, skin tissue, and nerve tissue. Replicating anisotropic tissue structuresin vitrohas posed a significant challenge. Three-dimensional (3D) printing technology is often used to fabricate biomimetic structures due to its advantages in manufacturing principle. However, direct 3D printing of freeform anisotropic bioactive structures has not been reported. To tackle this challenge, we developed a ternary F/G/P ink system that integrates the printability of Pluronic F127 (F), the robust bioactivity and photocrosslinking properties of gelatin methacryloyl (G), and the shear-induced alignment functionality of high-molecular-weight polyethylene glycol (P). And through this strategic ternary system combination, freeform anisotropic tissue structures can be 3D printed directly. Moreover, these anisotropic structures exhibit excellent bioactivity, and promote orientational growth of different cells. This advancement holds promise for the repair and replacement of anisotropic tissues within the human body.


Asunto(s)
Gelatina , Tinta , Poloxámero , Impresión Tridimensional , Andamios del Tejido , Anisotropía , Gelatina/química , Poloxámero/química , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos , Polietilenglicoles/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Metacrilatos/química , Ratones
18.
Sleep Med ; 115: 162-173, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367358

RESUMEN

The hippocampus (HPC) plays a pivotal role in fear learning and memory. Our two recent studies suggest that rapid eye movement (REM) sleep via the HPC downregulates fear memory consolidation and promotes fear extinction. However, it is not clear whether and how the dorsal and the ventral HPC regulates fear memory differently; and how the HPC in wake regulates fear memory. By chemogenetic stimulating in the HPC directly and its afferent entorhinal cortex that selectively activated the HPC in REM sleep for 3-6 h post-fear-acquisition, we found that HPC activation in REM sleep consolidated fear extinction memory. In particular, dorsal HPC (dHPC) stimulation in REM sleep virtually eliminated fear memory by enhancing fear extinction and reducing fear memory consolidation. By contrast, chemogenetic stimulating HPC afferent the supramammillary nucleus (SUM) induced 3-hr wake with HPC activation impaired fear extinction. Finally, desipramine (DMI) injection that selectively eliminated REM sleep for >6 h impaired fear extinction. Our results demonstrate that the HPC is critical for fear memory regulation; and wake HPC and REM sleep HPC have an opposite role in fear extinction of respective impairment and consolidation.


Asunto(s)
Miedo , Consolidación de la Memoria , Humanos , Extinción Psicológica/fisiología , Sueño/fisiología , Aprendizaje/fisiología , Hipocampo , Consolidación de la Memoria/fisiología
19.
Int J Biochem Cell Biol ; 169: 106541, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309648

RESUMEN

Microglial are major players in neuroinflammation that have recently emerged as potential therapeutic targets for neuropathic pain. Glucose metabolic programming has been linked to differential activation state and function in microglia. Tumor necrosis factor α-induced protein 8-like-2 (TNFAIP8L2) is an important component in regulating the anti-inflammatory response. However, the role of TNFAIP8L2 in microglia differential state during neuropathic pain and its interplay with glucose metabolic reprogramming in microglia has not yet been determined. Thus, we aimed to investigate the role of TNFAIP8L2 in the status of microglia in vitro and in vivo. BV2 microglial cells were treated with lipopolysaccharides plus interferon-gamma (LPS/IFNγ) or interleukin-4 (IL-4) to induce the two different phenotypes of microglia in vitro. In vivo experiments were conducted by chronic constriction injury of the sciatic nerve (CCI). We investigated whether TNFAIP8L2 regulates glucose metabolic programming in BV2 microglial cells. The data in vitro showed that TNFAIP8L2 lowers glycolysis and increases mitochondrial oxidative phosphorylation (OXPHOS) in inflammatory microglia. Blockade of glycolytic pathway abolished TNFAIP8L2-mediated differential activation of microglia. TNFAIP8L2 suppresses inflammatory microglial activation and promotes restorative microglial activation in BV2 microglial cells and in spinal cord microglia after neuropathic pain. Furthermore, TNFAIP8L2 controls differential activation of microglia and glucose metabolic reprogramming through the MAPK/mTOR/HIF-1α signaling axis. This study reveals that TNFAIP8L2 plays a critical role in neuropathic pain, providing important insights into glucose metabolic reprogramming and microglial phenotypic transition, which indicates that TNFAIP8L2 may be used as a potential drug target for the prevention of neuropathic pain.


Asunto(s)
Microglía , Neuralgia , Humanos , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Reprogramación Metabólica , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Proteínas Portadoras/metabolismo , Fenotipo , Glucosa/farmacología , Glucosa/metabolismo , Lipopolisacáridos/farmacología
20.
Biomater Sci ; 12(3): 738-747, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38105707

RESUMEN

The potential of 3D bioprinting in tissue engineering and regenerative medicine is enormous, but its implementation is hindered by the reliance on high-strength materials, which restricts the use of low-viscosity, biocompatible materials. Therefore, a major challenge for incorporating 3D bioprinting into tissue engineering is to develop a novel bioprinting platform that can reversibly provide high biological activity materials with a structural support. This study presents a room temperature printing system based on GelMA combined with carrageenan to address this challenge. By leveraging the wide temperature stability range and lubricating properties of carrageenan the room temperature stability of GelMA could be enhanced, as well as creating a solid ink to improve the performance of solid GelMA. Additionally, by utilizing the solubility of carrageenan at 37 °C, it becomes possible to prepare a porous GelMA structure while mimicking the unique extracellular matrix properties of osteocytes through residual carrageenan content and amplifying BMSCs' osteogenesis potential to some extent. Overall, this study provides an innovative technical platform for incorporating a low-viscosity ink into 3D bioprinting and resolves the long-standing contradiction between material printing performance and biocompatibility in bioprinting technology.


Asunto(s)
Bioimpresión , Andamios del Tejido , Andamios del Tejido/química , Carragenina , Impresión Tridimensional , Materiales Biocompatibles/química , Ingeniería de Tejidos , Hidrogeles/química , Gelatina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA