Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 140: 108943, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37451523

RESUMEN

Cryptocaryon irritans is a ciliated obligate parasite that causes cryptocaryonosis (white spot disease) and poses great threat to marine fish farming. In recent years, the use of probiotics protects fish from pathogens, which has been identified as the sustainable and environmentally friendly tool to maintain the health and well-being of the host. Accordingly, Cryptocaryon irritans tomont and probiotic Bacillus strain (B.licheniformis, previously isolated from aquaculture water) were co-cultured to detect whether B. licheniformis has anti-C. irritants effect. The result showed that during 4-day incubation, B. licheniformi with 1 × 107 CFU/mL and 1 × 108 CFU/mL concentration effectively inhibited the incubation of C. irritans tomont, indicating that B. licheniformi could inhibit the transformation from reproductive tomont to infective theront of C. irritans. Later, C. irritans samples in the control (without B. licheniformi supplementation) and 1 × 107 CFU/mL B. licheniformi treatment group were sent for transcriptome analysis. Compare with the control group, a total of 3237 differentially expressed genes were identified, among which 626 genes were up-regulated and 2611 genes were down-regulated in 1 × 107 CFU/mL B. licheniformi group. Further Kyoto Encyclopedia of Genes and Genomes pathways analysis showed that anti-C. irritans mechanism of B. licheniformi was mainly involved in the energy metabolism (carbon metabolism, oxidative phosphorylation, biosynthesis of amino acids), transcription and translation (Ribosomes, spliceosomes, RNA transport, etc), lysosome-based degradation (lysosome, phagosome, protein processing in endoplasmic reticulum) and PI3K-Akt pathways. Our study findings raised the possibility of using marine microorganism B. licheniformi in handling aquaculture associated pathogen C. irritans, and preliminarily clarified the molecular mechanism.


Asunto(s)
Bacillus licheniformis , Infecciones por Cilióforos , Cilióforos , Enfermedades de los Peces , Hymenostomatida , Perciformes , Animales , Infecciones por Cilióforos/parasitología , Bacillus licheniformis/genética , Fosfatidilinositol 3-Quinasas/genética , Enfermedades de los Peces/genética , Perfilación de la Expresión Génica/veterinaria , Perciformes/genética , Transcriptoma
2.
Fish Shellfish Immunol ; 143: 109212, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926203

RESUMEN

The present study aimed to reveal the role of inositol-requiring enzyme 1α (Ire1α) in mediating high-fat-diet (HFD) induced inflammation and apoptosis in fish and elucidate underling mechanisms of action. In experiment 1, black seabream juveniles were fed a control diet (Control, 12 % dietary lipid) or a high fat diet (HFD, 19 % dietary lipid) for eight weeks. In experiment 2, primary hepatocytes were isolated from black seabream juveniles and treated with oleic acid (OA, 200 µmol/L), OA + transfection with non-silencing control siRNA (negative control) (OA + NC), and OA + transfection with ire1α-small interfering RNA (OA + siire1α) for 48 h versus untreated (Control). Results indicated that fish fed HFD increased lipid deposition in the liver and caused hepatic steatosis. HFD group had significantly higher ire1α/Ire1α mRNA and phosphorylated protein expression and endoplasmic reticulum stress (ERS) related genes expression compared to the Control group, indicating that ERS was triggered. Meanwhile, feeding HFD induced inflammation and apoptosis by evaluated nuclear factor kappa B (nf-κb) mRNA and phosphorylated Nf-κb p65 protein expression, and c-Jun N-terminal kinase (jnk) mRNA and protein expression. However, knock down of ire1α (OA + siire1α) in primary hepatocytes alleviated OA-induced increased expression of ire1α/Ire1α mRNA and protein expression, nf-κb/Nf-κb p65 mRNA and phosphorylated protein expression, and jnk/Jnk mRNA and phosphorylated protein expression. These findings revealed the underling mechanism of action of HFD in fish, confirming that HFD increased ESR stress and Ire1α that, in turn, activated Nf-κb and Jnk pathways in hepatocytes and liver mediating HFD-induced inflammation and apoptosis.


Asunto(s)
Dorada , Animales , Dorada/metabolismo , FN-kappa B/metabolismo , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/veterinaria , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Inositol , Proteínas Serina-Treonina Quinasas/genética , Hígado/metabolismo , Hepatocitos/metabolismo , Apoptosis , Inflamación/veterinaria , Inflamación/metabolismo , Grasas de la Dieta/metabolismo , ARN Mensajero/metabolismo , Estrés del Retículo Endoplásmico
3.
Fish Physiol Biochem ; 49(6): 1115-1128, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37855969

RESUMEN

Glucose-regulated protein 78 (grp78) and activating transcription factor 6α (atf6α) are considered vital endoplasmic reticulum (ER) molecular chaperones and ER stress (ERS) sensors, respectively. In the present study, the full cDNA sequences of these two ERS-related genes were first cloned and characterized from black seabream (Acanthopagrus schlegelii). The grp78 cDNA sequence is 2606 base pair (bp) encoding a protein of 654 amino acids (aa). The atf6α cDNA sequence is 2168 base pair (bp) encoding a protein of 645 aa. The predicted aa sequences of A. schlegelii grp78 and atf6α indicated that the proteins contain all the structural features, which were characteristic of the two genes in other species. Tissues transcript abundance analysis revealed that the mRNAs of grp78 and atf6α were expressed in all measured tissues, but the highest expression of these two genes was all recorded in the gill followed by liver/ brain. Moreover, in vivo experiment found that fish intake of a high lipid diet (HLD) can trigger ERS by activating grp78/Grp78 and atf6α/Atf6α. However, it can be alleviated by dietary betaine supplementation, similar results were also obtained by in vitro experiment using primary hepatocytes of A. schlegelii. These findings will be beneficial for us to evaluate the regulator effects of HLD supplemented with betaine on ERS at the molecular level, and thus provide some novel insights into the functions of betaine in marine fish fed with an HLD.


Asunto(s)
Perciformes , Dorada , Animales , Chaperón BiP del Retículo Endoplásmico , Dorada/genética , Betaína , ADN Complementario/genética , Perciformes/genética , Estrés del Retículo Endoplásmico , Factores de Transcripción Activadores/genética , Clonación Molecular
4.
Br J Nutr ; 128(5): 793-801, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34879881

RESUMEN

An 8-week feeding trial was conducted to investigate the effects of dietary vitamin D3 supplementation on the growth performance, tissue Ca and P concentrations, antioxidant capacity, immune response and lipid metabolism in Litopenaeus vannamei larvae. A total of 720 shrimp (initial weight 0·50 ± 0·01 g) were randomly distributed into six treatments, each of which had three duplicates of forty shrimp per duplicate. Six isonitrogenous and isolipidic diets were formulated to contain graded vitamin D3 (0·18, 0·23, 0·27, 0·48, 0·57 and 0·98 mg/kg of vitamin D3, measured) supplementation levels. The results revealed that L. vannamei fed diet containing 0·48 mg/kg of vitamin D3 achieved the best growth performance. Compared with the control group, supplementing 0·48 mg/kg of vitamin D3 significantly increased (P < 0·05) the activities of catalase, total antioxidative capacity, alkaline phosphatase and acid phosphatase in serum and hepatopancreas. Expression levels of antioxidant and immune-related genes were synchronously increased (P < 0·05). Carapace P and Ca concentrations were increased (P < 0·05) with the increased vitamin D3 supplementation levels. Further analysis of lipid metabolism-related genes expression showed that shrimp fed 0·48 mg of vitamin D3 per kg diet showed the highest value in the expression of lipid synthesis-related genes, while shrimp fed 0·98 mg of vitamin D3 per kg diet showed the highest value in the expression of lipolysis-related genes. In conclusion, the results of present study indicated that dietary supplementation of 0·48 mg/kg of vitamin D3 could increase Ca and P concentrations, improve antioxidant capacity and immune response, and influence lipid metabolism in L. vannamei.


Asunto(s)
Antioxidantes , Metabolismo de los Lípidos , Animales , Antioxidantes/metabolismo , Larva , Inmunidad Innata , Dieta , Suplementos Dietéticos/análisis , Vitamina D/farmacología , Alimentación Animal/análisis
5.
Fish Shellfish Immunol ; 131: 827-837, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36334698

RESUMEN

The objective of the present study was to evaluate the effects of dietary choline levels on growth performance, antioxidant capacity, innate immunity and hemocyte apoptosis of Litopenaeus vannamei. Six isonitrogenous and isolipidic diets were formulated to contain different choline levels: 2.91 (basal diet), 3.85, 4.67, 6.55, 10.70 and 18.90 g kg-1choline, respectively. The results indicated that shrimp fed diet with 4.67 g kg-1 choline had the highest final body weight (FBW), percent weight gain (PWG), specific growth rate (SGR), feed efficiency (FE), and activities of alkaline phosphatase (AKP) and phenoloxidase (PO) in hemolymph among all treatments. Shrimp fed diet with 18.90 g kg-1 choline exhibited significantly lower crude lipid in hepatopancreas than those fed diets with 2.91, 3.85, 4.67 and 6.55 g kg-1 choline (P < 0.05). The concentration of reactive oxygen species (ROS) and apoptosis rate in hemocytes significantly decreased with the increase of dietary choline levels (P < 0.05). Shrimp fed diets with 6.55, 10.70 and 18.90 g kg-1 choline had significantly higher scavenging ability of hydroxyl radical (SAHR) and total antioxidant capacity (T-AOC) in hemolymph than those fed diet with 2.91 g kg-1 choline (P < 0.05). Dietary choline supplementation down-regulated the expression of genes related to apoptosis such as caspase-1, caspase-3, caspase-8, p53, and p38MAPK in hemocytes (P < 0.05), while up-regulated the expression of anti-apoptosis gene bcl2 in hemocytes (P < 0.05). Overall, the results of the present study demonstrated that appropriate dietary choline could improve growth performance and feed utilization, enhance antioxidant capacity and innate immunity, and mitigate apoptosis in Litopenaeus vannamei. Moreover, the inhibition of hemocyte apoptosis by dietary choline may be regulated by the p38MAPK-p53 signaling pathway.


Asunto(s)
Antioxidantes , Penaeidae , Animales , Antioxidantes/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Alimentación Animal/análisis , Colina/farmacología , Dieta/veterinaria , Inmunidad Innata , Transducción de Señal , Suplementos Dietéticos
6.
Aquac Nutr ; 2022: 2222029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36860453

RESUMEN

The present study was aimed at evaluating the regulatory effects of dietary lipid levels on growth performance, osmoregulation, fatty acid composition, lipid metabolism, and physiological response in Acanthopagrus schlegelii under low salinity (5 psu). An 8-week feeding trial was conducted in juvenile A. schlegelii with an initial weight of 2.27 ± 0.05 g, and six isonitrogenous experimental diets were formulated with graded levels of lipid: 68.7 g/kg (D1), 111.7 g/kg (D2), 143.5 g/kg (D3), 188.9 g/kg (D4), 239.3 g/kg (D5), and 269.4 g/kg (D6), respectively. Results indicated that fish fed with diet containing 188.9 g/kg lipid significantly improved growth performance. Dietary D4 improved ion reabsorption and osmoregulation by increasing the concentrations of Na+, K+, and cortisol in serum and activities of Na+/K+-ATPase as well as expression levels of osmoregulation related to gene expression levels in the gill and intestine. The expression levels of long chain polyunsaturated fatty acid biosynthesis-related genes were dramatically upregulated when dietary lipid levels increased from 68.7 g/kg to 189.9 g/kg with levels of docosahexaenoic (DHA), eicosapentaenoic (EPA), and DHA/EPA ratio being highest in the D4 group. When fish fed dietary lipid levels from 68.7 g/kg to 188.9 g/kg, lipid homeostasis could be maintained by upregulating sirt1 and pparα expression levels, whereas lipid accumulation was observed in dietary lipid levels of 239.3 g/kg and over. Fish fed with high dietary lipid levels resulted in physiological stress related to oxidative stress and endoplasmic reticulum stress. In conclusion, based on weight gain, the optimal dietary lipid requirement of juvenile A. schlegelii reared at low-salinity water is 196.0 g/kg. These findings indicate that the optimal dietary lipid level can improve growth performance, n-3 LC-PUFA accumulation, and osmoregulatory ability and maintain lipid homeostasis and normal physiological functions of juvenile A. schlegelii.

7.
Aquac Nutr ; 2022: 3007674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36860462

RESUMEN

An 8-week feeding trial was carried out to assess the effect of dietary krill meal on growth performance and expression of genes related to TOR pathway and antioxidation of swimming crab (Portunus trituberculatus). Four experimental diets (45% crude protein and 9% crude lipid) were formulated to obtain different replacements of fish meal (FM) with krill meal (KM); FM was replaced with KM at 0% (KM0), 10% (KM10), 20% (KM20), and 30% (KM30); fluorine concentration in diets were analyzed to be 27.16, 94.06, 153.81, and 265.30 mg kg-1, respectively. Each diet was randomly divided into 3 replicates; ten swimming crabs were stocked in each replicate (initial weight, 5.62 ± 0.19 g). The results indicated that crabs fed with the KM10 diet had the highest final weight, percent weight gain (PWG), and specific growth rate (SGR) among all treatments (P < 0.05). Crabs fed with the KM0 diet had the lowest activities of total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), glutathione (GSH), and hydroxyl radical scavenging activity and had the highest concentration of malondialdehyde (MDA) in the hemolymph and the hepatopancreas (P < 0.05). In the hepatopancreas, the highest content of 20:5n-3 (EPA) and the lowest content of 22:6n-3 (DHA) were shown in crabs fed with the KM30 diet among all treatments (P < 0.05). With the substitution level of FM with KM gradually increasing from 0% to 30%, the color of the hepatopancreas changed from pale white to red. Expression of tor, akt, s6k1, and s6 in the hepatopancreas was significantly upregulated, while 4e-bp1, eif4e1a, eif4e2, and eif4e3 were downregulated with dietary replacement of FM with KM increasing from 0% to 30% (P < 0.05). Crabs fed with the KM20 diet had notably higher expression of cat, gpx, cMnsod, and prx than those fed with the KM0 diet (P < 0.05). Results demonstrated that 10% replacement of FM with KM can promote growth performance and antioxidant capacity and notably upregulate the mRNA levels of genes related to TOR pathway and antioxidant of swimming crab.

8.
Aquac Nutr ; 2022: 6038613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37346375

RESUMEN

An eight-week feeding trail was carried out to investigate the impacts of different dietary arachidonic acid (ARA) supplementations on growth performance, antioxidant capacity, tissue fatty acid profiles, and lipid metabolism of mud crab (Scylla paramamosain) juvenile. Six isonitrogenous (480 g kg-1 crude protein) and isolipidic (80 g kg-1 crude lipid) diets were formulated to contain 0.40, 2.50, 4.60, 8.90, 12.50, and 15.70 g ARA kg-1 (dry matter), respectively. Each experimental treatment included 24 mud crab juveniles (initial weight 11.29 ± 0.09 g) and was assigned to triplicate groups (n = 3). Crabs fed diets with 2.50, 4.60, and 8.90 g kg-1 ARA presented significantly higher percent weight gain (PWG) and specific growth rate (SGR) than those fed the other diets. Based on two-slope broken-line and quadratic curve regression analysis of PWG against dietary ARA levels, optimal dietary ARA levels were determined to be 5.20 g kg-1 and 6.20 g kg-1, respectively. Crabs fed with 4.60 g kg-1 ARA diet showed the lowest activities of alanine aminotransferase (ALT) as well as aspartate aminotransferase (AST) in hemolymph among all treatments. In hemolymph and hepatopancreas, total antioxidant capacity (T-AOC), the activities of total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px) as well as the contents of reduced glutathione (GSH) rose first and then dropped with the increase of dietary ARA levels, while the concentration of malondialdehyde (MDA) showed an opposite trend. Tissue fatty acid profiles reflected diets fatty acid compositions. The ARA contents in hepatopancreas and muscle significantly increased with the increase of dietary ARA levels. Furthermore, the areas of blasenzellen (B) cells and restzellen (R) cells were significantly downregulated with the increase of dietary ARA levels. Crabs fed with 0.40 g kg-1 ARA diet showed significantly higher gene expression levels of fatty acid synthase (fas) as well as acetyl-CoA carboxylase (acc) among all treatments. Relative gene expression levels of 6-phosphogluconate dehydrogenase (6pgd) as well as glucose-6-phosphate dehydrogenase (g6pd) have been significantly upregulated in 0.40 and 2.50 g kg-1 ARA groups. Relative gene expression level of fatty acid binding protein 1 (fabp1) significantly increased in 4.60, 8.90, 12.50, and 15.70 g kg-1 ARA groups. However, the gene expression levels of fatty acid binding protein 4 (fabp4) as well as scavenger receptor class 2 (srb2) have not been influenced by dietary ARA levels. What is more, crabs fed diets with 4.60, 8.90, 12.50, and 15.70 g kg-1 ARA had a significantly higher expression level of carnitine palmitoyltransferase 1 (cpt1) than those fed diets with 0.40 and 2.50 g kg-1 ARA. In summary, optimum dietary ARA can promote growth, enhance antioxidant capacity, and improve health of mud crab juveniles. It also demonstrated that lipogenesis has been restrained with the increasing dietary ARA levels. These findings could provide theoretical guidance and reference for the lipid nutrition research as well as the development of the commercial diet in mud crab.

9.
Fish Physiol Biochem ; 48(4): 955-971, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35771297

RESUMEN

This study was conducted to evaluate the effects of different dietary lipid sources on growth performance, lipid metabolism, and physiological stress responses including oxidative stress (OS) and endoplasmic reticulum stress (ERS) of juvenile Acanthopagrus schlegelii (initial weight 0.88 ± 0.01 g) fed a high-fat diet (HFD). Four isonitrogenous and isolipidic experimental diets containing different lipid sources were formulated: fish oil (FO), palm oil (PO), linseed oil (LO), and soybean oil (SO), respectively. Results indicated that fish fed HFD supplemented with FO significantly improved growth than SO treatment. The high concentrations of aspartate aminotransferase and alanine transaminase were found in HFD supplemented with SO. Fish fed dietary LO supplementation showed significantly lower serum cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein contents than those in SO group. Likewise, hepatic paraffin section analysis indicated that HFD with PO or SO supplementation increased fat drop. The expression levels of peroxisome proliferators-activated receptor alpha (pparα) and silent regulator 1 (sirt1) were significantly elevated by HFD with FO or LO supplementation. Additionally, the key marker of OS malonaldehyde was significantly increased in FO and SO groups. ERS-related genes were activated in dietary PO or SO supplementation and, hence, triggering inflammation and apoptosis by promoting the expression levels of nuclear factor kappa B (nf-κb) and c-Jun N-terminal kinase (jnk). Overall, the present study reveals that lipid metabolic disorders and physiological stress caused by a HFD have significant lipid source-dependent effects, which have important guiding significance for the use of HFD in marine fish.


Asunto(s)
Enfermedades Metabólicas , Perciformes , Dorada , Animales , Dieta Alta en Grasa , Aceites de Pescado/farmacología , Aceite de Linaza/farmacología , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Aceite de Palma/farmacología , Perciformes/fisiología , Aceite de Soja/farmacología , Estrés Fisiológico
10.
Br J Nutr ; 125(8): 876-890, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32854790

RESUMEN

An 8-week feeding trial was conducted to evaluate the effects of dietary n-3 LC-PUFA levels on growth performance, tissue fatty acid profiles and relative expression of genes involved in the lipid metabolism of mud crab (Scylla paramamosain). Ten isonitrogenous diets were formulated to contain five n-3 LC-PUFA levels at 7 and 12 % dietary lipid levels. The highest weight gain and specific growth rate were observed in crabs fed the diets with 19·8 and 13·2 mg/g n-3 LC-PUFA at 7 and 12 % lipid, respectively. Moisture and lipid contents in hepatopancreas and muscle were significantly influenced by dietary n-3 LC-PUFA at the two lipid levels. The DHA, EPA, n-3 LC-PUFA contents and n-3:n-6 PUFA ratio in hepatopancreas and muscle significantly increased as dietary n-3 LC-PUFA levels increased at both lipid levels. The expression levels of -6 fatty acyl desaturase and acyl-CoA oxidase in hepatopancreas increased significantly, and expression levels of fatty acid synthase, carnitine palmitoyltransferase I and hormone-sensitive TAG lipase were down-regulated, with increased dietary n-3 LC-PUFA regardless of lipid level. Based on weight gain, n-3 LC-PUFA requirements of S. paramamosain were estimated to be 20·1 and 12·7 mg/g of diet at 7 and 12 % dietary lipid, respectively. Overall, dietary lipid level influenced lipid metabolism, and purified, high-lipid diets rich in palmitic acid reduced the n-3 LC-PUFA requirement of juvenile mud crab.


Asunto(s)
Braquiuros/crecimiento & desarrollo , Braquiuros/metabolismo , Grasas de la Dieta/administración & dosificación , Ácidos Grasos Omega-3/administración & dosificación , Metabolismo de los Lípidos , Alimentación Animal , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Regulación hacia Abajo , Ácido Graso Desaturasas/metabolismo , Ácido Graso Sintasas/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Hepatopáncreas/metabolismo , Músculos/metabolismo , Esterol Esterasa/metabolismo , Aumento de Peso
11.
Ecotoxicol Environ Saf ; 213: 112004, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33581488

RESUMEN

Salinity is one of the important factors affecting the physiological state of crustaceans in marine environments. Lipid plays major roles in energy supply and is main sources of essential fatty acids for membrane integrity, which is critical in adaptations to changes in salinity. Here we evaluated the effects of salinity (medium, 23 ppt and low, 4 ppt) and dietary lipid source (fish oil, FO and soybean oil, SO) on intestinal health of the marine crustacean mud crab Scylla paramamosain. The results indicated that low salinity and dietary SO (LSO group) significantly affected intestinal histomorphology, with a significant decrease of intestinal fold height and width as well as down-regulation of intestinal mRNA levels of tight junction genes compared to crab reared at medium salinity and fed FO diets (MFO group). Crabs reared at low salinity and fed SO showed an increased inflammatory response in intestine, which stimulated a physiological detoxification response together with apoptosis compared to crab in the MFO group. Low salinity and SO diets also could be responsible for multiply the pathogenic bacteria of Photobacterium and inhibit the beneficial bacteria of Firmicutes and Rhodobacteraceae in intestine, and act on a crucial impact on the development of intestinal microbial barrier disorders. The results of microbial function predictive analysis also support these inferences. The findings of the present study demonstrated that soybean oil as the main dietary lipid source could exacerbate the adverse effects of low salinity on intestinal health of mud crab, and provided evidence suggesting that dietary lipid source and fatty acid composition may play vital roles in intestinal health and the process of adaptation to environmental salinity in marine crustaceans.


Asunto(s)
Braquiuros/fisiología , Exposición Dietética/estadística & datos numéricos , Aceite de Soja , Adaptación Fisiológica/genética , Animales , Braquiuros/genética , Dieta , Intestinos , ARN Mensajero/genética , Salinidad
12.
J Anim Physiol Anim Nutr (Berl) ; 105(4): 678-686, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33793003

RESUMEN

The effects of copper/zinc-loaded montmorillonite (Cu/Zn-Mt) on growth performance, intestinal barrier and gut microbiota of weaned pigs were investigated in the present study. A total of 108 piglets (Duroc × Landrace × Yorkshire; 6.36 kg; weaned at 21 ± 1 d age) were used in this experiment. The pigs were randomly assigned to three treatments with six replicates, six pigs in each replicate. The three treatments were as follows: (1) control group: basal diet; (2) Cu/Zn-Mt group: basal diet supplemented with 39 mg/kg Cu and 75 mg/kg Zn as Cu/Zn-Mt; and (3) Cu +Zn +Mt group: basal diet supplemented with the mixture of copper sulphate, zinc sulphate and montmorillonite (equivalent to the copper and zinc in the Cu/Zn-Mt treatment). The results indicated that, compared with the pigs from control group, average daily gain and gain: feed ratio were increased and the faecal score on days 7 and 14 after weaning was decreased by supplementation of Cu/Zn-Mt; intestinal transepithelial electrical resistance (TER) and expressions of tight junction protein claudin-1 and zonula occludens-1 were increased, and intestinal permeability of fluorescein isothiocyanate-dextran 4 kDa was decreased by supplementation with Cu/Zn-Mt. According to the Illumina-based sequencing results, Cu/Zn-Mt supplementation increased the relative abundance of core bacteria (Lactococcus, Bacillus) at genus level and decreased the potentially pathogenic bacteria (Streptococcus and Pseudomonas) in colon of weaned piglets. However, the piglets fed with the mixture of copper sulphate, zinc sulphate and montmorillonite showed no effects in above parameters in comparison with the pigs from control group. In conclusion, dietary Cu/Zn-Mt could improve growth performance, decrease the diarrhoea and improve intestinal barrier and bacterial communities of weaned pigs. The results indicated that 'loading' of montmorillonite with Zn and Cu changed not only its chemical but also its nutritional properties.


Asunto(s)
Microbioma Gastrointestinal , Zinc , Animales , Bentonita , Cobre/farmacología , Dieta/veterinaria , Suplementos Dietéticos , Porcinos , Destete , Zinc/farmacología
13.
Br J Nutr ; 124(8): 773-784, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32410717

RESUMEN

The present study evaluated the effects of dietary Zn level on growth performance, serum and hepatopancreas metabolites, expression of genes involved in lipid and energy metabolism, and the signalling pathway of dietary Zn-induced lipolysis. Five isonitrogenous and isolipidic diets were formulated to contain different Zn levels: 46·4 (basal diet), 77·2, 87·0, 117·1 and 136·8 mg/kg, respectively. The results indicated that shrimp fed the diet containing Zn at 117·1 mg/kg had higher weight gain and specific growth rate, and the lowest feed intake and feed conversion rate, than shrimp fed the other diets. The deposition rate of Zn in whole body significantly decreased with increasing dietary Zn level. Dietary Zn prevented the accumulation of free radicals and improved antioxidant activities by increasing Cu/Zn superoxide dismutase and reducing malondialdehyde in hepatopancreas. Dietary Zn supplementation enhanced lipase activity and adiponectin, which could promote TAG breakdown and fatty acid oxidation and lead to reduced lipid in hepatopancreas. The mRNA expressions of ob-rb, adipor, camkkß, ampk, cd36, mcd and cpt1 involved in Zn-induced lipid catabolism were up-regulated, and the expressions of srebp, acc, fas and scd1 were down-regulated. The mRNA levels of SLC39 family genes (zip3, zip9, zip11 and zip14) in hepatopancreas were up-regulated with increasing dietary Zn level. The results demonstrated that dietary Zn level could significantly affect growth performance, tissue deposition of Zn, lipid metabolites and expression of genes involved in lipogenesis and lipolysis in Litopenaeus vannamei.


Asunto(s)
Alimentación Animal/análisis , Suplementos Dietéticos , Lipólisis/efectos de los fármacos , Penaeidae/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Zinc/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antioxidantes/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Dieta/métodos , Hepatopáncreas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Malondialdehído/metabolismo , Oxidación-Reducción/efectos de los fármacos , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo
14.
Br J Nutr ; 124(7): 681-692, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32364086

RESUMEN

The aim of the present study was to investigate the effects of dietary Zn level on growth performance, Zn bioaccumulation, antioxidant capacity and innate immunity in juvenile mud crabs (Scylla paramamosain). Six semi-purified diets were formulated to contain dietary Zn levels of 44·5, 56·9, 68·5, 97·3, 155·6 or 254·7 mg/kg. Dietary Zn level significantly influenced percentage weight gain (PWG), with the highest observed in crabs fed the diet containing 97·3 mg/kg Zn. Tissue Zn concentrations significantly increased as dietary Zn levels increased from 44·5 to 254·7 mg/kg. Retention of Zn in hepatopancreas increased with dietary Zn levels up to 68·5 mg/kg and then significantly decreased. Moreover, inadequate dietary Zn (44·5 and 56·9 mg/kg) reduced antioxidation markers including total superoxide dismutase (SOD) and Cu/Zn SOD activities and total antioxidant level. Crabs fed the diet with 44·5 mg/kg Zn also showed significantly lower expression of genes involved in antioxidant status, such as Cu/Zn SOD, glutathione peroxidase, catalase and thioredoxin than those fed diets containing 68·5 and 97·3 mg/kg Zn. The highest activities of phenoloxidase and alkaline phosphatase were recorded in crabs fed the diets containing 68·5 and 97·3 mg/kg Zn. Expression levels of prophenoloxidase and toll-like receptor 2 were higher in crabs fed the 97·3 mg/kg Zn diet compared with crabs fed the other diets. Based on PWG alone, the optimal dietary Zn level was estimated to be 82·9 mg/kg, with 68·5 to 97·3 mg/kg recommended for maintaining optimal Zn bioaccumulation, oxidation resistance and innate immune response of juvenile mud crabs.


Asunto(s)
Bioacumulación/efectos de los fármacos , Braquiuros/crecimiento & desarrollo , Suplementos Dietéticos , Inmunidad Innata/efectos de los fármacos , Zinc/farmacología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Ingestión de Alimentos/fisiología
15.
Br J Nutr ; 123(2): 149-160, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31603067

RESUMEN

The regulation of lipogenesis and lipolysis mechanisms related to consumption of lipid has not been studied in swimming crab. The aims of the present study were to evaluate the effects of dietary lipid levels on growth, enzymes activities and expression of genes of lipid metabolism in hepatopancreas of juvenile swimming crab. Three isonitrogenous diets were formulated to contain crude lipid levels at 5·8, 9·9 and 15·1 %. Crabs fed the diet containing 15·1 % lipid had significantly lower growth performance and feed utilisation than those fed the 5·8 and 9·9 % lipid diets. Crabs fed 5·8 % lipid had lower malondialdehyde concentrations in the haemolymph and hepatopancreas than those fed the other diets. Highest glutathione peroxidase in haemolymph and superoxide dismutase in hepatopancreas were observed in crabs fed 5·8 % lipid. The lowest fatty acid synthase and glucose 6-phosphate dehydrogenase activities in hepatopancreas were observed in crabs fed 15·1 % lipid, whereas crabs fed 5·8 % lipid had lower carnitine palmitoyltransferase-1 activity than those fed the other diets. Crabs fed 15·1 % lipid showed lower hepatopancreas expression of genes involved in long-chain-PUFA biosynthesis, lipoprotein clearance, fatty acid uptake, fatty acid oxidation, lipid anabolism and lipid catabolism than those fed the other diets, whereas expression of some genes of lipoprotein assembly and fatty acid oxidation was up-regulated compared with crabs fed 5·8 % lipid. Overall, high dietary lipid level can inhibit growth, reduce antioxidant enzyme activities and influence lipid metabolic pathways to regulate lipid deposition in crab.


Asunto(s)
Braquiuros/crecimiento & desarrollo , Braquiuros/metabolismo , Grasas de la Dieta/administración & dosificación , Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Braquiuros/enzimología , Braquiuros/genética , Dieta/veterinaria , Grasas de la Dieta/farmacología , Ácido Graso Sintasas/efectos de los fármacos , Ácidos Grasos/metabolismo , Glucosafosfato Deshidrogenasa/efectos de los fármacos , Glutatión Peroxidasa/efectos de los fármacos , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/enzimología , Hepatopáncreas/metabolismo , Malondialdehído/metabolismo , Oxidación-Reducción/efectos de los fármacos , Superóxido Dismutasa/efectos de los fármacos , Natación
17.
Br J Nutr ; 115(6): 984-93, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26810899

RESUMEN

Whey protein concentrate (WPC) has been reported to have protective effects on the intestinal barrier. However, the molecular mechanisms involved are not fully elucidated. Transforming growth factor-ß1 (TGF-ß1) is an important component in the WPC, but whether TGF-ß1 plays a role in these processes is not clear. The aim of this study was to investigate the protective effects of WPC on the intestinal epithelial barrier as well as whether TGF-ß1 is involved in these protection processes in a piglet model after lipopolysaccharide (LPS) challenge. In total, eighteen weanling pigs were randomly allocated to one of the following three treatment groups: (1) non-challenged control and control diet; (2) LPS-challenged control and control diet; (3) LPS+5 %WPC diet. After 19 d of feeding with control or 5 %WPC diets, pigs were injected with LPS or saline. At 4 h after injection, pigs were killed to harvest jejunal samples. The results showed that WPC improved (P<0·05) intestinal morphology, as indicated by greater villus height and villus height:crypt depth ratio, and intestinal barrier function, which was reflected by increased transepithelial electrical resistance and decreased mucosal-to-serosal paracellular flux of dextran (4 kDa), compared with the LPS group. Moreover, WPC prevented the LPS-induced decrease (P<0·05) in claudin-1, occludin and zonula occludens-1 expressions in the jejunal mucosae. WPC also attenuated intestinal inflammation, indicated by decreased (P<0·05) mRNA expressions of TNF-α, IL-6, IL-8 and IL-1ß. Supplementation with WPC also increased (P<0·05) TGF-ß1 protein, phosphorylated-Smad2 expression and Smad4 and Smad7 mRNA expressions and decreased (P<0·05) the ratios of the phosphorylated to total c-jun N-terminal kinase (JNK) and p38 (phospho-JNK:JNK and p-p38:p38), whereas it increased (P<0·05) the ratio of extracellular signal-regulated kinase (ERK) (phospho-ERK:ERK). Collectively, these results suggest that dietary inclusion of WPC attenuates the LPS-induced intestinal injury by improving mucosal barrier function, alleviating intestinal inflammation and influencing TGF-ß1 canonical Smad and mitogen-activated protein kinase signalling pathways.


Asunto(s)
Suplementos Dietéticos , Modelos Animales de Enfermedad , Enterocolitis/prevención & control , Mucosa Intestinal/fisiopatología , Intestinos/fisiopatología , Proteínas de Uniones Estrechas/metabolismo , Proteína de Suero de Leche/uso terapéutico , Animales , Cruzamientos Genéticos , Citocinas/genética , Citocinas/metabolismo , Impedancia Eléctrica , Enterocolitis/metabolismo , Enterocolitis/patología , Enterocolitis/fisiopatología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/inmunología , Intestinos/patología , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas , Masculino , Orquiectomía/veterinaria , Permeabilidad , Distribución Aleatoria , Sus scrofa , Proteínas de Uniones Estrechas/genética , Factor de Crecimiento Transformador beta1/análisis , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/uso terapéutico , Destete , Proteína de Suero de Leche/química
18.
Animals (Basel) ; 14(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38998098

RESUMEN

This study aimed to evaluate the effects of arginine (0.5%, 1%, 1.5%, 2%, and 2.5% arginine supplementation levels were selected) on the ovarian development of Pacific white shrimp (Litopenaeus vannamei). The analyzed arginine supplementation levels in each diet were 2.90%, 3.58%, 4.08%, 4.53%, 5.04%, and 5.55%, respectively. A total of 540 shrimp (an initial weight of approximately 14 g) with good vitality were randomly distributed into six treatments, each of which had three tanks (300 L in volume filled with 200 L of water), with 30 shrimp per duplicate. Shrimp were fed three times a day (6:00 a.m., 11:00 a.m., and 6:00 p.m.). The results showed that after the 12-week raring cycle, shrimp fed with 4.08% and 4.53% Arg achieved better ovary development, which was identified by ovarian stage statistics, ovarian morphology observation, serum hormone levels (methylfarneside (MF); 5-hydroxytryptamine (5-HT); estradiol (E2); and gonadotropin-releasing hormone (GnRH)), gene expression (DNA meiotic recombinase 1 (dmc1), proliferating cell nuclear antigen (pcna), drosophila steroid hormone 1 (cyp18a), retinoid X receptor (rxra), and ecdysone receptor (ecr)). Further in-depth analysis showed that 4.08% and 4.53% Arg supplementation increased the concentration of vitellogenin in hepatopancreas and serum (p < 0.05) and upregulated the expression level of hepatopancreatic vg and vgr (p < 0.05), which promoted the synthesis of hepatopancreas exogenous vitellogenin and then transported it into the ovary through the vitellogenin receptor and further promoted ovarian maturation in L. vannamei. Meanwhile, compared with the control group, the expression level of vg in the ovary of the 4.53% Arg group was significantly upregulated (p < 0.05), which indicated endogenous vitellogenin synthesis in ovarian maturation in L. vannamei. Moreover, the expression of genes related to the mechanistic target of the rapamycin complex 1 (mTORC1) pathway and protein levels was regulated by dietary arginine supplementation levels. Arginine metabolism-related products, including nitric oxide synthase (NOS), nitric oxide (NO), and cyclic guanosine monophosphate (cGMP), were also affected. RNA interference was applied here to study the molecular regulation mechanism of arginine on ovarian development in L. vannamei. A green fluorescent protein (GFP)-derived double-stranded RNA (dsGFP) is currently commonly used as a control, while TOR-derived dsRNA (dsTOR) and NOS-derived dsRNA (dsNOS) were designed to build the TOR and NOS in vivo knockdown model. The results showed that the mTORC1 and NO-sGC-cGMP pathways were inhibited, while the vitellogenin receptor and vitellogenin gene expression levels were downregulated significantly in the hepatopancreas and ovary. Overall, dietary arginine supplementation could enhance endogenous and exogenous vitellogenin synthesis to promote ovary development in L. vannamei, and the appropriate dosages were 4.08% and 4.53%. The NO-sGC-cGMP and mTORC1 signaling pathways mediated arginine in the regulation of ovary development in L. vannamei.

19.
Front Microbiol ; 15: 1430199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101040

RESUMEN

Reports regarding the composition and functions of microorganisms in activated sludge from wastewater treatment plants for treating tuna processing wastewater remains scarce, with prevailing studies focusing on municipal and industrial wastewater. This study delves into the efficiency and biological dynamics of activated sludge from tuna processing wastewater, particularly under conditions of high lipid content, for pollutant removal. Through metagenomic analysis, we dissected the structure of microbial community, and its relevant biological functions as well as pathways of nitrogen and lipid metabolism in activated sludge. The findings revealed the presence of 19 phyla, 1,880 genera, and 7,974 species, with Proteobacteria emerging as the predominant phylum. The study assessed the relative abundance of the core microorganisms involved in nitrogen removal, including Thauera sp. MZ1T and Alicycliphilus denitrificans K601, among others. Moreover, the results also suggested that a diverse array of fatty acid-degrading microbes, such as Thauera aminoaromatica and Cupriavidus necator H16, could thrive under lipid-rich conditions. This research can provide some referable information for insights into optimizing the operations of wastewater treatment and identify some potential microbial agents for nitrogen and fatty acid degradation.

20.
Anim Nutr ; 15: 58-70, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37818178

RESUMEN

An 8-week feeding trial was conducted in Pacific white shrimp (Litopenaeus vannamei) to evaluate the effects of dietary choline supplementation on choline transport and metabolism, hepatopancreas histological structure and fatty acid profile, and regulation of lipid metabolism. Six isonitrogenous and isolipidic diets were formulated to contain different choline levels of 2.91 (basal diet), 3.85, 4.67, 6.55, 10.70 and 18.90 g/kg, respectively. A total of 960 shrimp (initial weight, 1.38 ± 0.01 g) were distributed randomly into twenty-four 250-L cylindrical fiber-glass tanks, with each diet assigned randomly to 4 replicate tanks. The results indicated that dietary choline significantly promoted the deposition of choline, betaine and carnitine (P < 0.05). The diameters and areas of R cells, total lipid and triglyceride contents in hepatopancreas, and triglyceride and non-esterified fatty acid contents in hemolymph were negatively correlated with dietary choline level. The contents of functional fatty acids in hepatopancreas, the activity of acetyl-CoA carboxylase (Acc), and the mRNA expression of fas, srebp and acc were highest in shrimp fed the diet containing 4.67 g/kg choline, and significantly higher than those fed the diet containing 2.91 g/kg, the lowest level of choline (P < 0.05). The number of R cells, content of very low-density lipoprotein (VLDL), activities of carnitine palmitoyl-transferase (Cpt1), lipoprotein lipase and hepatic lipase, and the mRNA expression levels of cpt1, fabp, fatp, ldlr, and ampk in hepatopancreas increased significantly as dietary choline increased (P < 0.05). In addition, hepatopancreas mRNA expression levels of ctl1, ctl2, oct1, badh, bhmt, ck, cept, and cct were generally up-regulated as dietary choline level increased (P < 0.01). In conclusion, dietary choline promoted the deposition of choline and its metabolites by up-regulating genes related to choline transport and metabolism. Moreover, appropriate dietary choline level promoted the development of hepatopancreas R cells and maintained the normal accumulation of lipids required for development, while high dietary choline not only promoted hepatopancreas lipid export by enhancing VLDL synthesis, but also promoted fatty acid ß-oxidation and inhibited de novo fatty acid synthesis by activating the Ampk/Srebp signaling pathway. These findings provided further insight and understanding of the mechanisms by which dietary choline regulated lipid metabolism in L. vannamei.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA