Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Med Res Rev ; 44(3): 975-1012, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38126568

RESUMEN

Ischemic stroke (IS) poses a significant threat to global human health and life. In recent decades, we have witnessed unprecedented progresses against IS, including thrombolysis, thrombectomy, and a few medicines that can assist in reopening the blocked brain vessels or serve as standalone treatments for patients who are not eligible for thrombolysis/thrombectomy therapies. However, the narrow time windows of thrombolysis/thrombectomy, coupled with the risk of hemorrhagic transformation, as well as the lack of highly effective and safe medications, continue to present big challenges in the acute treatment and long-term recovery of IS. In the past 3 years, several excellent articles have reviewed pathophysiology of IS and therapeutic medicines for the treatment of IS based on the pathophysiology. Regretfully, there is no comprehensive overview to summarize all categories of anti-IS drugs/agents designed and synthesized based on molecular mechanisms of IS pathophysiology. From medicinal chemistry view of point, this article reviews a multitude of anti-IS drugs/agents, including small molecule compounds, natural products, peptides, and others, which have been developed based on the molecular mechanism of IS pathophysiology, such as excitotoxicity, oxidative/nitrosative stresses, cell death pathways, and neuroinflammation, and so forth. In addition, several emerging medicines and strategies, including nanomedicines, stem cell therapy and noncoding RNAs, which recently appeared for the treatment of IS, are shortly introduced. Finally, the perspectives on the associated challenges and future directions of anti-IS drugs/agents are briefly provided to move the field forward.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/etiología , Terapia Trombolítica/efectos adversos , Trombectomía , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/etiología , Resultado del Tratamiento
2.
J Sep Sci ; 47(1): e2300790, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234029

RESUMEN

Sinomenine is an active ingredient extracted from herb medicine, which has been prescribed to treat rheumatoid arthritis in clinics. The present work was to develop a simple method to simultaneously determine sinomenine and its metabolites desmethyl sinomenine and sinomenine N-oxide in rat plasma by liquid chromatography tandem mass spectrometry. Precursor-to-product transitions for detection were m/z 330.2 > 239.1 for sinomenine, m/z 316.2 > 239.1 for desmethyl-sinomenine, m/z 346.2 > 314.1 for sinomenine N-oxide and m/z 286.2 > 153.2 for morphine (internal standard), respectively. During the validation and sample quantification, an excellent linear calibration range was observed for all the analytes with correlation coefficients more than 0.999 (r > 0.99). The extraction recovery was more than 85%. No significant matrix effect and carryover were observed. The precision was less than 6.45%, whereas accuracy ranged from -4.10% to 7.23%. The validated method has been successfully applied to the pharmacokinetic study of sinomenine, desmethyl sinomenine, and sinomenine N-oxide in rat plasma after oral administration of sinomenine at a single dose of 5 mg/kg. The results suggested that sinomenine was rapidly metabolized into its metabolite desmethyl sinomenine and sinomenine N-oxide.


Asunto(s)
Morfinanos , Espectrometría de Masas en Tándem , Ratas , Animales , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión/métodos
3.
Biomed Chromatogr ; 38(5): e5833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38291606

RESUMEN

XL092 is a potent ATP-competitive inhibitor of multiple receptor tyrosine kinases that is undergoing clinical development for the treatment of lung cancer. In this study, an LC triple quadrupole mass spectrometry method was established to measure XL092 in monkey plasma. A Waters ACQUITY UPLC BEH C18 column was used for chromatographic separation. The mobile phase consisted of water containing 0.1% formic acid and acetonitrile with a gradient elution at the flow rate of 0.4 mL/min. Multiple reaction monitoring mode was used for quantitative analysis of XL092 in positive electrospray ionization. In the concentration range of 0.5-1000 ng/mL, XL092 showed excellent linearity in monkey plasma with a correlation coefficient greater than 0.995 (r > 0.995). The lowest limit of quantification was 0.5 ng/mL. The intra- and inter-day relative standard deviations were <9.99%, while the relative error ranged from -12.50% to 8.10%. The mean recovery was over 82.51%. XL092 was stable in monkey plasma after storage under certain conditions. The validated method was demonstrated to be selective, sensitive, and reliable, and has been successfully applied to the pharmacokinetic study of XL092 in monkey plasma. XL092 showed moderate short half-life (~3.81 h) and good oral bioavailability (80%).


Asunto(s)
Espectrometría de Masas en Tándem , Animales , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Modelos Lineales , Masculino , Cromatografía Liquida/métodos , Límite de Detección , Sensibilidad y Especificidad , Cromatografía Líquida de Alta Presión/métodos , Macaca fascicularis , Estabilidad de Medicamentos
4.
Biopharm Drug Dispos ; 45(1): 30-42, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38236698

RESUMEN

SCO-267 is a potent G-protein-coupled receptor 40 agonist that is undergoing clinical development for the treatment of type 2 diabetes mellitus. The current work was undertaken to investigate the bioactivation potential of SCO-267 in vitro and in vivo. Three SCO-267-derived glutathione (GSH) conjugates (M1-M3) were found both in rat and human liver microsomal incubations supplemented with GSH and nicotinamide adenine dinucleotide phosphate. Two GSH conjugates (M1-M2) together with two N-acetyl-cysteine conjugates (M4-M5) were detected in the bile of rats receiving SCO-267 at 10 mg/kg. The identified conjugates suggested the generation of quinone-imine and ortho-quinone intermediates. CYP3A4 was demonstrated to primarily catalyze the bioactivation of SCO-267. In addition, SCO-267 concentration-, time-, and NADPH-dependently inactivated CYP3A in human liver microsomes using testosterone as a probe substrate, along with KI and kinact values of 4.91 µM and 0.036 min-1 , respectively. Ketoconazole (a competitive inhibitor of CYP3A) displayed no significant protective effect on SCO-267-induced CYP3A inactivation. However, inclusion of GSH showed significant protection. These findings revealed that SCO-267 undergoes a facile CYP3A4-catalyzed bioactivation with the generation of quinone-imine and ortho-quinone intermediates, which were assumed to be involved in SCO-267 induced CYP3A inactivation. These findings provide further insight into the bioactivation pathways involved in the generation of reactive, potentially toxic metabolites of SCO-267. Further studies are needed to evaluate the influence of SCO-267 metabolism on the safety of this drug in vivo.


Asunto(s)
Benzoquinonas , Citocromo P-450 CYP3A , Diabetes Mellitus Tipo 2 , Piperidinas , Piridinas , Humanos , Ratas , Animales , Citocromo P-450 CYP3A/metabolismo , Activación Metabólica , Diabetes Mellitus Tipo 2/metabolismo , Quinonas/metabolismo , Iminas/metabolismo , Microsomas Hepáticos/metabolismo , Glutatión/metabolismo
5.
Molecules ; 29(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38792236

RESUMEN

Influenza A (H1N1) viruses are prone to antigenic mutations and are more variable than other influenza viruses. Therefore, they have caused continuous harm to human public health since the pandemic in 2009 and in recent times. Influenza A (H1N1) can be prevented and treated in various ways, such as direct inhibition of the virus and regulation of human immunity. Among antiviral drugs, the use of natural products in treating influenza has a long history, and natural medicine has been widely considered the focus of development programs for new, safe anti-influenza drugs. In this paper, we focus on influenza A (H1N1) and summarize the natural product-derived phytochemicals for influenza A virus (H1N1) prevention and treatment, including marine natural products, flavonoids, alkaloids, terpenoids and their derivatives, phenols and their derivatives, polysaccharides, and derivatives of natural products for prevention and treatment of influenza A (H1N1) virus. We further discuss the toxicity and antiviral mechanism against influenza A (H1N1) as well as the druggability of natural products. We hope that this review will facilitate the study of the role of natural products against influenza A (H1N1) activity and provide a promising alternative for further anti-influenza A drug development.


Asunto(s)
Antivirales , Productos Biológicos , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Fitoquímicos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Fitoquímicos/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/química , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Gripe Humana/tratamiento farmacológico , Gripe Humana/prevención & control , Animales , Flavonoides/química , Flavonoides/farmacología , Flavonoides/uso terapéutico
6.
Ultrasound J ; 16(1): 14, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386209

RESUMEN

BACKGROUND: Given the limited success rate and considerable challenges associated with conventional ultrasonography (US) guidance for percutaneous nephrostomy (PCN) in non-hydronephrotic kidneys, this study proposed a solution with ultrasound contrast agent to enhance the success rate and mitigate the difficulties. MATERIALS AND METHODS: From January 2017 to August 2023, a total of thirteen patients diagnosed with non-hydronephrotic kidney were included in the study. Following routine ultrasonography examination, no significant dilatation of the renal collecting system was observed. US-guided percutaneous nephrostomy PCN was performed with the assistance of ultrasound contrast agent (UCA). The patients were subsequently monitored to assess the improvement of symptoms and postoperative recovery. RESULTS: The success rate was found to be 100% for all patients (13/13) and kidneys (20/20). The average volume of UCA solution used was 19 ± 6.7 mL (range, 11-35 mL), while the mean duration of the operation was 18.92 ± 8.96 min (range, 7-36 min). A majority of the patients (12/13) underwent a single puncture procedure. Throughout the follow-up period, no serious complications were observed, and surgery resulted in significant alleviation of symptoms in all patients. CONCLUSION: The use of UCA-assisted US guidance PCN has been shown to be effective in achieving urinary diversion and alleviating associated clinical symptoms in non-hydronephrotic kidneys. In comparison to traditional methods, this approach demonstrates a high success rate and safety profile, while also offering a simplified operative procedure. Consequently, it presents a novel method and concept for managing non-hydronephrotic kidneys afflicted by urine leakage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA