Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(19): e2219994120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126689

RESUMEN

Glutamate (Glu) is the major excitatory transmitter in the nervous system. Impairment of its vesicular release by ß-amyloid (Aß) oligomers is thought to participate in pathological processes leading to Alzheimer's disease. However, it remains unclear whether soluble Aß42 oligomers affect intravesicular amounts of Glu or their release in the brain, or both. Measurements made in this work on single Glu varicosities with an amperometric nanowire Glu biosensor revealed that soluble Aß42 oligomers first caused a dramatic increase in vesicular Glu storage and stimulation-induced release, accompanied by a high level of parallel spontaneous exocytosis, ultimately resulting in the depletion of intravesicular Glu content and greatly reduced release. Molecular biology tools and mouse models of Aß amyloidosis have further established that the transient hyperexcitation observed during the primary pathological stage is mediated by an altered behavior of VGLUT1 responsible for transporting Glu into synaptic vesicles. Thereafter, an overexpression of Vps10p-tail-interactor-1a, a protein that maintains spontaneous release of neurotransmitters by selective interaction with t-SNAREs, resulted in a depletion of intravesicular Glu content, triggering advanced-stage neuronal malfunction. These findings are expected to open perspectives for remediating Aß42-induced neuronal hyperactivity and neuronal degeneration.


Asunto(s)
Enfermedad de Alzheimer , Ácido Glutámico , Ratones , Animales , Ácido Glutámico/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Fragmentos de Péptidos/metabolismo
2.
Analyst ; 149(13): 3530-3536, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38757525

RESUMEN

ATP plays a crucial role in cell energy supply, so the quantification of intracellular ATP levels is particularly important for understanding many physio-pathological processes. The intracellular quantification of this non-electroactive molecule can be realized using aptamer-modified nanoelectrodes, but is hindered by the limited quantity of modification and electroactive tags on the nanosized electrodes. Herein, we developed a simple but effective electrochemical signal amplification strategy for intracellular ATP detection, which replaces the regular ATP aptamer-linked ferrocene monomer with a polymer, thus greatly magnifying the amounts of electrochemical reporters linked to one chain of the aptamer and enhancing the signals. This ferrocene polymer-ATP aptamer was further immobilized onto Au nanowire electrodes (SiC@C@Au NWEs) to achieve accurate quantification of intracellular ATP in single cells, presenting high electrochemical signal output and high specificity. This work not only provides a powerful tool for quantifying intracellular ATP but also offers a simple and versatile strategy for electrochemical signal amplification in the detection of broader non-electroactive molecules involved in different kinds of intracellular physiological processes.


Asunto(s)
Adenosina Trifosfato , Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Compuestos Ferrosos , Oro , Metalocenos , Adenosina Trifosfato/análisis , Aptámeros de Nucleótidos/química , Humanos , Oro/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Metalocenos/química , Compuestos Ferrosos/química , Técnicas Biosensibles/métodos , Electrodos , Polímeros/química , Nanocables/química , Límite de Detección , Células HeLa
3.
J Clin Ultrasound ; 52(3): 305-314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38149658

RESUMEN

OBJECTIVES: Radiomics-based eXtreme gradient boosting (XGBoost) model was developed to differentiate benign thyroid nodules from malignant thyroid nodules and to prevent unnecessary thyroid biopsies, including positive and negative effects. METHODS: The study evaluated a data set of ultrasound images of thyroid nodules in patients retrospectively, who initially received ultrasound-guided fine-needle aspiration biopsy (FNAB) for diagnostic purposes. According to ACR TI-RADS, a total of five ultrasound feature categories and the maximum size of the nodule were determined by four radiologists. A radiomics score was developed by the LASSO algorithm from the ultrasound-based radiomics features. An interpretative method based on Shapley additive explanation (SHAP) was developed. XGBoost was compared with ACR TI-RADS for its diagnostic performance and FNAB rate and was compared with six other machine learning models to evaluate the model performance. RESULTS: Finally, 191 thyroid nodules were examined from 177 patients. The radiomics score were calculated using 8 features, which were selected among 789 candidate features generated from the ultrasound images. The model yielded an AUC of 93% in the training cohort and 92% in the test cohort. It outperformed traditional machine learning models in assessing the nature of thyroid nodules. Compared with ACR TI-RADS, the FNAB rate decreased from 34% to 30% in training and from 35% to 41% in test. CONCLUSIONS: The radiomics-based XGBoost model proposed could distinguish benign and malignant thyroid nodules, thereby reduced significantly the number of unnecessary FNAB. It was effective in making preoperative decisions and managing selected patients using the SHAP visual interpretation tools.


Asunto(s)
Nódulo Tiroideo , Humanos , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/patología , Estudios Retrospectivos , Radiómica , Diagnóstico Diferencial , Ultrasonografía/métodos , Biopsia con Aguja Fina
4.
Angew Chem Int Ed Engl ; 62(51): e202313612, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37909054

RESUMEN

The glutathione (GSH) system is one of the most powerful intracellular antioxidant systems for the elimination of reactive oxygen species (ROS) and maintaining cellular redox homeostasis. However, the rapid kinetics information (at the millisecond to the second level) during the dynamic antioxidation process of the GSH system remains unclear. As such, we specifically developed a novel dual-wire nanosensor (DWNS) that can selectively and synchronously measure the levels of GSH and ROS with high temporal resolution, and applied it to monitor the transient ROS generation as well as the rapid antioxidation process of the GSH system in individual cancer cells. These measurements revealed that the glutathione peroxidase (GPx) in the GSH system is rapidly initiated against ROS burst in a sub-second time scale, but the elimination process is short-lived, ending after a few seconds, while some ROS are still present in the cells. This study is expected to open new perspectives for understanding the GSH antioxidant system and studying some redox imbalance-related physiological.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno , Glutatión/metabolismo , Oxidación-Reducción
5.
Angew Chem Int Ed Engl ; 61(15): e202115820, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35134265

RESUMEN

The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.


Asunto(s)
Biomimética , Técnicas Biosensibles , Glutatión , Nanocables , Conductividad Eléctrica , Glutatión/química , Nanocables/química , Polímeros/química
6.
Anal Chem ; 89(7): 4320-4327, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28301132

RESUMEN

Here, we propose a strategy for unique nuclear-shell biopolymers initiated by telomere elongation for telomerase activity detection and precise drug delivery to individual cancer cells. Telomerase-triggered DNA rolling-circle amplification (RCA) is used to assemble nuclear-shell biopolymers with signal molecules for selective cancer cell recognition and efficient drug delivery to targeted individual cells. This strategy not only should allow the creation of clustered 5-carboxyfluorescein (FAM)-fluorescence spots in response to human-telomerase activity in individual cancer cells but also could efficiently deliver drugs to reduce the undesired death of healthy cells. These findings offer new opportunities to improve the efficacy of cancer cell imaging and therapy.


Asunto(s)
Biopolímeros/química , Neoplasias de la Mama/diagnóstico por imagen , Sistemas de Liberación de Medicamentos , Fluoresceínas/química , Neoplasias Hepáticas/diagnóstico por imagen , Imagen Molecular , Telómero/metabolismo , Neoplasias del Cuello Uterino/diagnóstico por imagen , Supervivencia Celular , Células Cultivadas , ADN de Neoplasias/genética , Femenino , Fluorescencia , Células HeLa , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Células MCF-7 , Nanopartículas/química , Técnicas de Amplificación de Ácido Nucleico , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie , Telomerasa/metabolismo , Telómero/química
8.
Nanoscale ; 16(18): 8950-8959, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38630023

RESUMEN

Exosomal programmed death ligand-1 (ExoPD-L1) is a vital marker of immune activation in the early stages of tumor therapy and it can inhibit anti-tumor immune responses. However, due to the low expression of ExoPD-L1 in cancer cells, it is difficult to perform highly sensitive assays and accurately differentiate cancer sources. Therefore, we constructed a coaxial dual-path electrochemical biosensor for highly accurate identification and detection of ExoPD-L1 from lung cancer based on chemical-biological coaxial nanomaterials and nucleic acid molecular signal amplification strategies. The measurements showed that the detected ExoPD-L1 concentrations ranged from 6 × 102 particles per mL to 6 × 108 particles per mL, and the detection limit was 310 particles per mL. Compared to other sensors, the electrochemical biosensor designed in this study has a lower detection limit and a wider detection range. Furthermore, we also successfully identified lung cancer-derived ExoPD-L1 by analyzing multiple protein biomarkers expressed on exosomes through the "AND" logic strategy. This sensor platform is expected to realize highly sensitive detection and accurate analysis of multiple sources of ExoPD-L1 and provide ideas for the clinical detection of ExoPD-L1.


Asunto(s)
Antígeno B7-H1 , Técnicas Biosensibles , Técnicas Electroquímicas , Exosomas , Neoplasias Pulmonares , Técnicas Biosensibles/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Humanos , Antígeno B7-H1/análisis , Antígeno B7-H1/metabolismo , Exosomas/química , Exosomas/metabolismo , Límite de Detección , Biomarcadores de Tumor/análisis , Línea Celular Tumoral
9.
World J Gastrointest Oncol ; 16(4): 1361-1373, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38660655

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is among the most prevalent and life-threatening malignancies worldwide. Syndecan-2 methylation (mSDC2) testing has emerged as a widely used biomarker for early detection of CRC in stool and serum samples. Cancer (CRC) is among the most prevalent and life-threatening malignancies worldwide. mSDC2 testing has emerged as a widely used biomarker for early detection of CRC in stool and serum samples. AIM: To validate the effectiveness of fecal DNA mSDC2 testing in the detection of CRC among a high-risk Chinese population to provide evidence-based data for the development of diagnostic and/or screening guidelines for CRC in China. METHODS: A high-risk Chinese cohort consisting of 1130 individuals aged 40-79 years was selected for evaluation via fecal mSDC2 testing. Sensitivity and specificity for CRC, advanced adenoma (AA) and advanced colorectal neoplasia (ACN) were determined. High-risk factors for the incidence of colorectal lesions were determined and a logistic regression model was constructed to reflect the efficacy of the test. RESULTS: A total of 1035 high-risk individuals were included in this study according to established criteria. Among them, 16 suffered from CRC (1.55%), 65 from AA (6.28%) and 189 from non-AAs (18.26%); 150 patients were diagnosed with polyps (14.49%). Diagnoses were established based upon colonoscopic and pathological examinations. Sensitivities of the mSDC2 test for CRC and AA were 87.50% and 40.00%, respectively; specificities were 95.61% for other groups. Positive predictive values of the mSDC2 test for CRC, AA and ACN were 16.09%, 29.89% and 45.98%, respectively; the negative predictive value for CRC was 99.79%. After adjusting for other high-risk covariates, mSDC2 test positivity was found to be a significant risk factor for the occurrence of ACN (P < 0.001). CONCLUSION: Our findings confirmed that offering fecal mSDC2 testing and colonoscopy in combination for CRC screening is effective for earlier detection of malignant colorectal lesions in a high-risk Chinese population.

10.
Adv Sci (Weinh) ; 11(28): e2307981, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713722

RESUMEN

Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.


Asunto(s)
Adenosina , Antibacterianos , Ácidos y Sales Biliares , Disbiosis , Microbioma Gastrointestinal , Transcriptoma , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Ácidos y Sales Biliares/metabolismo , Disbiosis/metabolismo , Disbiosis/microbiología , Disbiosis/genética , Ratones , Transcriptoma/genética , Antibacterianos/farmacología , Adenosina/análogos & derivados , Adenosina/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Masculino
11.
Chem Commun (Camb) ; 59(13): 1773-1776, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36722385

RESUMEN

Intracellular H2S plays an important regulatory role in cell metabolism. The limited sensing materials and severe sensor passivation hinder its quantification. We functionalized conductive nanowires with MoS2 and quercetin in a large-scale manner, developed single nanowire sensors with excellent electrocatalytic and anti-poisoning performance, and achieved the accurate quantification of H2S within single cells.


Asunto(s)
Sulfuro de Hidrógeno , Nanocables , Sulfuro de Hidrógeno/metabolismo
12.
Biosens Bioelectron ; 222: 114928, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36450163

RESUMEN

Reactive oxygen species (ROS) and nicotinamide adenine dinucleotide (NADH) are important intracellular redox-active molecules involved in various pathological processes including inflammation, neurodegenerative diseases, and cancer. However, the fast dynamic changes and mutual regulatory kinetic relationship between intracellular ROS and NADH in these biological processes are still hard to simultaneously investigate. A dual-channel nanowire electrode (DC-NWE) integrating two conductive nanowires, one functionalized with platinum nanoparticles and the other with conductive polymer, was nanofabricated for the selective and simultaneous real-time monitoring of intracellular ROS and NADH release by mitochondria in single living MCF-7 tumoral cells stimulated by resveratrol. The production of ROS was observed to occur tenths of a second before the release of NADH, a significant new piece of information suggesting a mechanism of action of resveratrol. Beyond the importance of the specific data gathered in this study, this work established the feasibility of simultaneously monitoring multiple species and analyzing their kinetics relationships over sub-second time scales thanks to dual-channel nanowire electrodes. It is believed that this concept and its associated nanoelectrochemical tools might benefit to a deeper understanding of mutual regulatory relationship between intracellular crucial molecular markers during physiological and pathological processes as well as for evaluating medical treatments.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , NAD/química , Especies Reactivas de Oxígeno , Cinética , Resveratrol , Platino (Metal) , Oxidación-Reducción
13.
Sci Rep ; 6: 29872, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27412605

RESUMEN

A novel core-shell DNA self-assembly catalyzed by thiol-disulfide exchange reactions was proposed, which could realize GSH-initiated hybridization chain reaction (HCR) for signal amplification and molecules gathering. Significantly, these self-assembled products via electrostatic interaction could accumulate into prominent and clustered fluorescence-bright spots in single cancer cells for reduced glutathione monitoring, which will effectively drive cell monitoring into a new era.


Asunto(s)
ADN/química , Disulfuros/química , Glutatión/análisis , Hepatocitos/química , Oligonucleótidos/química , Análisis de la Célula Individual/métodos , Alcanosulfonatos/química , Compuestos Azo/química , Línea Celular , ADN/metabolismo , Disulfuros/metabolismo , Fluoresceína/química , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Glutatión/química , Glutatión/metabolismo , Células HeLa , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Humanos , Concentración de Iones de Hidrógeno , Células K562 , Oligonucleótidos/metabolismo , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA