Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Genet ; 23(11): 697-710, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821097

RESUMEN

A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Evolución Biológica , Fenotipo , Proteínas/genética
2.
PLoS Genet ; 20(7): e1011318, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39024186

RESUMEN

Sex chromosomes are evolutionarily labile in many animals and sometimes fuse with autosomes, creating so-called neo-sex chromosomes. Fusions between sex chromosomes and autosomes have been proposed to reduce sexual conflict and to promote adaptation and reproductive isolation among species. Recently, advances in genomics have fuelled the discovery of such fusions across the tree of life. Here, we discovered multiple fusions leading to neo-sex chromosomes in the sapho subclade of the classical adaptive radiation of Heliconius butterflies. Heliconius butterflies generally have 21 chromosomes with very high synteny. However, the five Heliconius species in the sapho subclade show large variation in chromosome number ranging from 21 to 60. We find that the W chromosome is fused with chromosome 4 in all of them. Two sister species pairs show subsequent fusions between the W and chromosomes 9 or 14, respectively. These fusions between autosomes and sex chromosomes make Heliconius butterflies an ideal system for studying the role of neo-sex chromosomes in adaptive radiations and the degeneration of sex chromosomes over time. Our findings emphasize the capability of short-read resequencing to detect genomic signatures of fusion events between sex chromosomes and autosomes even when sex chromosomes are not explicitly assembled.


Asunto(s)
Mariposas Diurnas , Evolución Molecular , Cromosomas Sexuales , Animales , Mariposas Diurnas/genética , Cromosomas Sexuales/genética , Femenino , Masculino , Filogenia , Genómica/métodos , Sintenía , Cromosomas de Insectos/genética , Genoma de los Insectos
3.
Nat Rev Genet ; 21(8): 461-475, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32382123

RESUMEN

Coloration is an easily quantifiable visual trait that has proven to be a highly tractable system for genetic analysis and for studying adaptive evolution. The application of genomic approaches to evolutionary studies of coloration is providing new insight into the genetic architectures underlying colour traits, including the importance of large-effect mutations and supergenes, the role of development in shaping genetic variation and the origins of adaptive variation, which often involves adaptive introgression. Improved knowledge of the genetic basis of traits can facilitate field studies of natural selection and sexual selection, making it possible for strong selection and its influence on the genome to be demonstrated in wild populations.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Genoma , Genómica , Pigmentación/genética , Carácter Cuantitativo Heredable , Animales , Variación Genética , Genómica/métodos , Herencia Multifactorial , Mutación , Fenotipo , Pigmentos Biológicos/genética , Sitios de Carácter Cuantitativo , Selección Genética
4.
Nat Rev Genet ; 21(8): 503, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32424309

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38941083

RESUMEN

Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population. We investigate these processes in an economically important noctuid crop pest, Helicoverpa zea, which has evolved resistance to a wide range of pesticides. Its sister species Helicoverpa armigera, first detected as an invasive species in Brazil in 2013, introduced the pyrethroid-resistance gene CYP337B3 to South American H. zea via adaptive introgression. To understand whether this could contribute to pesticide resistance in North America, we sequenced 237 H. zea genomes across 10 sample sites. We report H. armigera introgression into the North American H. zea population. Two individuals sampled in Texas in 2019 carry H. armigera haplotypes in a 4 Mbp region containing CYP337B3. Next, we identify signatures of selection in the panmictic population of nonadmixed H. zea, identifying a selective sweep at a second cytochrome P450 gene: CYP333B3. We estimate that its derived allele conferred a ∼5% fitness advantage and show that this estimate explains independently observed rare nonsynonymous CYP333B3 mutations approaching fixation over a ∼20-year period. We also detect putative signatures of selection at a kinesin gene associated with Bt resistance. Overall, we document two mechanisms of rapid adaptation: the introduction of fitness-enhancing alleles through interspecific introgression, and selection on intraspecific variation.


Asunto(s)
Introgresión Genética , Resistencia a los Insecticidas , Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Resistencia a los Insecticidas/genética , Sistema Enzimático del Citocromo P-450/genética , América del Norte , Adaptación Biológica/genética , Adaptación Fisiológica/genética , Selección Genética , Especies Introducidas
6.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401262

RESUMEN

Hypolimnas misippus is a Batesian mimic of the toxic African Queen butterfly (Danaus chrysippus). Female H. misippus butterflies use two major wing patterning loci (M and A) to imitate three color morphs of D. chrysippus found in different regions of Africa. In this study, we examine the evolution of the M locus and identify it as an example of adaptive atavism. This phenomenon involves a morphological reversion to an ancestral character that results in an adaptive phenotype. We show that H. misippus has re-evolved an ancestral wing pattern present in other Hypolimnas species, repurposing it for Batesian mimicry of a D. chrysippus morph. Using haplotagging, a linked-read sequencing technology, and our new analytical tool, Wrath, we discover two large transposable element insertions located at the M locus and establish that these insertions are present in the dominant allele responsible for producing mimetic phenotype. By conducting a comparative analysis involving additional Hypolimnas species, we demonstrate that the dominant allele is derived. This suggests that, in the derived allele, the transposable elements disrupt a cis-regulatory element, leading to the reversion to an ancestral phenotype that is then utilized for Batesian mimicry of a distinct model, a different morph of D. chrysippus. Our findings present a compelling instance of convergent evolution and adaptive atavism, in which the same pattern element has independently evolved multiple times in Hypolimnas butterflies, repeatedly playing a role in Batesian mimicry of diverse model species.


Asunto(s)
Mimetismo Biológico , Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Elementos Transponibles de ADN , Mimetismo Biológico/genética , Fenotipo , África , Alas de Animales/anatomía & histología
7.
Genome Res ; 32(10): 1862-1875, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36109150

RESUMEN

Despite insertions and deletions being the most common structural variants (SVs) found across genomes, not much is known about how much these SVs vary within populations and between closely related species, nor their significance in evolution. To address these questions, we characterized the evolution of indel SVs using genome assemblies of three closely related Heliconius butterfly species. Over the relatively short evolutionary timescales investigated, up to 18.0% of the genome was composed of indels between two haplotypes of an individual Heliconius charithonia butterfly and up to 62.7% included lineage-specific SVs between the genomes of the most distant species (11 Mya). Lineage-specific sequences were mostly characterized as transposable elements (TEs) inserted at random throughout the genome and their overall distribution was similarly affected by linked selection as single nucleotide substitutions. Using chromatin accessibility profiles (i.e., ATAC-seq) of head tissue in caterpillars to identify sequences with potential cis-regulatory function, we found that out of the 31,066 identified differences in chromatin accessibility between species, 30.4% were within lineage-specific SVs and 9.4% were characterized as TE insertions. These TE insertions were localized closer to gene transcription start sites than expected at random and were enriched for sites with significant resemblance to several transcription factor binding sites with known function in neuron development in Drosophila We also identified 24 TE insertions with head-specific chromatin accessibility. Our results show high rates of structural genome evolution that were previously overlooked in comparative genomic studies and suggest a high potential for structural variation to serve as raw material for adaptive evolution.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Cromatina/genética , Elementos Transponibles de ADN/genética , Genómica , Mutación INDEL , Drosophila/genética , Evolución Molecular
8.
Proc Biol Sci ; 291(2027): 20240627, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39045691

RESUMEN

The extent to which evolution is repeatable has been a debated topic among evolutionary biologists. Although rewinding the tape of life perhaps would not lead to the same outcome every time, repeated evolution of analogous genes for similar functions has been extensively reported. Wing phenotypes of butterflies and moths have provided a wealth of examples of gene re-use, with certain 'hotspot loci' controlling wing patterns across diverse taxa. Here, we present an example of convergent evolution in the molecular genetic basis of Batesian wing mimicry in two Hypolimnas butterfly species. We show that mimicry is controlled by variation near cortex/ivory/mir-193, a known butterfly hotspot locus. By dissecting the genetic architecture of mimicry in Hypolimnas misippus and Hypolimnas bolina, we present evidence that distinct non-coding regions control the development of white pattern elements in the forewing and hindwing of the two species, suggesting independent evolution, and that no structural variation is found at the locus. Finally, we also show that orange coloration in H. bolina is associated with optix, a well-known patterning gene. Overall, our study once again implicates variation near the hotspot loci cortex/ivory/mir-193 and optix in butterfly wing mimicry and thereby highlights the repeatability of adaptive evolution.


Asunto(s)
Mimetismo Biológico , Mariposas Diurnas , Alas de Animales , Mariposas Diurnas/genética , Mariposas Diurnas/fisiología , Animales , Alas de Animales/anatomía & histología , Pigmentación/genética , MicroARNs/genética , Evolución Biológica , Fenotipo
9.
PLoS Biol ; 19(1): e3001022, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465061

RESUMEN

Plants and insects often use the same compounds for chemical communication, but not much is known about the genetics of convergent evolution of chemical signals. The terpene (E)-ß-ocimene is a common component of floral scent and is also used by the butterfly Heliconius melpomene as an anti-aphrodisiac pheromone. While the biosynthesis of terpenes has been described in plants and microorganisms, few terpene synthases (TPSs) have been identified in insects. Here, we study the recent divergence of 2 species, H. melpomene and Heliconius cydno, which differ in the presence of (E)-ß-ocimene; combining linkage mapping, gene expression, and functional analyses, we identify 2 novel TPSs. Furthermore, we demonstrate that one, HmelOS, is able to synthesise (E)-ß-ocimene in vitro. We find no evidence for TPS activity in HcydOS (HmelOS ortholog of H. cydno), suggesting that the loss of (E)-ß-ocimene in this species is the result of coding, not regulatory, differences. The TPS enzymes we discovered are unrelated to previously described plant and insect TPSs, demonstrating that chemical convergence has independent evolutionary origins.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Afrodisíacos/antagonistas & inhibidores , Mariposas Diurnas , Feromonas/metabolismo , Transferasas Alquil y Aril/genética , Animales , Reacción de Prevención/efectos de los fármacos , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Evolución Molecular , Femenino , Genes de Insecto , Masculino , Feromonas/farmacología , Filogenia , Conducta Sexual Animal/efectos de los fármacos , Especificidad de la Especie
10.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34155138

RESUMEN

Genetic variation segregates as linked sets of variants or haplotypes. Haplotypes and linkage are central to genetics and underpin virtually all genetic and selection analysis. Yet, genomic data often omit haplotype information due to constraints in sequencing technologies. Here, we present "haplotagging," a simple, low-cost linked-read sequencing technique that allows sequencing of hundreds of individuals while retaining linkage information. We apply haplotagging to construct megabase-size haplotypes for over 600 individual butterflies (Heliconius erato and H. melpomene), which form overlapping hybrid zones across an elevational gradient in Ecuador. Haplotagging identifies loci controlling distinctive high- and lowland wing color patterns. Divergent haplotypes are found at the same major loci in both species, while chromosome rearrangements show no parallelism. Remarkably, in both species, the geographic clines for the major wing-pattern loci are displaced by 18 km, leading to the rise of a novel hybrid morph in the center of the hybrid zone. We propose that shared warning signaling (Müllerian mimicry) may couple the cline shifts seen in both species and facilitate the parallel coemergence of a novel hybrid morph in both comimetic species. Our results show the power of efficient haplotyping methods when combined with large-scale sequencing data from natural populations.


Asunto(s)
Mariposas Diurnas/genética , Haplotipos/genética , Hibridación Genética , Animales , Mimetismo Biológico , Inversión Cromosómica/genética , Ecuador , Reordenamiento Génico/genética , Variación Genética , Genoma , Carácter Cuantitativo Heredable , Selección Genética , Especificidad de la Especie
11.
Chembiochem ; 24(22): e202300537, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37650217

RESUMEN

Male Heliconius butterflies possess two pheromone emitting structures, wing androconia and abdominal clasper scent glands. The composition of the clasper scent gland of males of 17 Heliconius and Eueides species from an overlapping area in Ecuador, comprising three mimicry groups, was investigated by GC/MS. The chemical signal serves as an anti-aphrodisiac signal that is transferred from males to females during mating, indicating the mating status of the female to prevent them from harassment by other males. In addition, the odour may also serve in predator defence. There is potential for convergence driven by mimicry, although, such convergence might be detrimental for species recognition of the butterflies within the mimicry ring, making mating more difficult. More than 500 compounds were detected, consisting of volatile, semi-volatile or non-volatile compounds, including terpenes, fatty acid esters or aromatic compounds. Several novel esters were identified by GC/MS and GC/IR data, microderivatisation and synthesis, including butyl (Z)-3-dodecenoate and other (Z)-3-alkenoates, 3-oxohexyl citronellate and 5-methylhexa-3,5-dienyl (E)-2,3-dihydrofarnesoate. The secretions were found to be species specific, potentially allowing for species differentiation. Statistical analysis of the compounds showed differentiation by phylogenetic clade and species, but not by mimicry group.


Asunto(s)
Mariposas Diurnas , Animales , Masculino , Femenino , Glándulas Odoríferas/química , Filogenia , Feromonas , Odorantes/análisis
12.
Mol Ecol ; 32(21): 5742-5756, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37800849

RESUMEN

Understanding the rate and extent to which populations can adapt to novel environments at their ecological margins is fundamental to predicting the persistence of biological communities during ongoing and rapid global change. Recent range expansion in response to climate change in the UK butterfly Aricia agestis is associated with the evolution of novel interactions with a larval food plant, and the loss of its ability to use an ancestral host species. Using ddRAD analysis of 61,210 variable SNPs from 261 females from throughout the UK range of this species, we identify genomic regions at multiple chromosomes that are associated with evolutionary responses, and their association with demographic history and ecological variation. Gene flow appears widespread throughout the range, despite the apparently fragmented nature of the habitats used by this species. Patterns of haplotype variation between selected and neutral genomic regions suggest that evolution associated with climate adaptation is polygenic, resulting from the independent spread of alleles throughout the established range of this species, rather than the colonization of pre-adapted genotypes from coastal populations. These data suggest that rapid responses to climate change do not depend on the availability of pre-adapted genotypes. Instead, the evolution of novel forms of biotic interaction in A. agestis has occurred during range expansion, through the assembly of novel genotypes from alleles from multiple localities.


Asunto(s)
Mariposas Diurnas , Animales , Femenino , Mariposas Diurnas/genética , Geografía , Ecosistema , Aclimatación , Reino Unido , Evolución Biológica , Cambio Climático
13.
PLoS Biol ; 18(2): e3000597, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32027643

RESUMEN

Natural selection leaves distinct signatures in the genome that can reveal the targets and history of adaptive evolution. By analysing high-coverage genome sequence data from 4 major colour pattern loci sampled from nearly 600 individuals in 53 populations, we show pervasive selection on wing patterns in the Heliconius adaptive radiation. The strongest signatures correspond to loci with the greatest phenotypic effects, consistent with visual selection by predators, and are found in colour patterns with geographically restricted distributions. These recent sweeps are similar between co-mimics and indicate colour pattern turn-over events despite strong stabilising selection. Using simulations, we compare sweep signatures expected under classic hard sweeps with those resulting from adaptive introgression, an important aspect of mimicry evolution in Heliconius butterflies. Simulated recipient populations show a distinct 'volcano' pattern with peaks of increased genetic diversity around the selected target, characteristic of sweeps of introgressed variation and consistent with diversity patterns found in some populations. Our genomic data reveal a surprisingly dynamic history of colour pattern selection and co-evolution in this adaptive radiation.


Asunto(s)
Evolución Biológica , Mimetismo Biológico/genética , Mariposas Diurnas/genética , Selección Genética/genética , Animales , Mariposas Diurnas/clasificación , Frecuencia de los Genes , Introgresión Genética , Sitios Genéticos , Variación Genética , Genoma de los Insectos/genética , Fenotipo , Filogeografía , Pigmentación/genética , Alas de Animales/metabolismo
14.
PLoS Biol ; 18(2): e3000610, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32108180

RESUMEN

Neo-sex chromosomes are found in many taxa, but the forces driving their emergence and spread are poorly understood. The female-specific neo-W chromosome of the African monarch (or queen) butterfly Danaus chrysippus presents an intriguing case study because it is restricted to a single 'contact zone' population, involves a putative colour patterning supergene, and co-occurs with infection by the male-killing endosymbiont Spiroplasma. We investigated the origin and evolution of this system using whole genome sequencing. We first identify the 'BC supergene', a broad region of suppressed recombination across nearly half a chromosome, which links two colour patterning loci. Association analysis suggests that the genes yellow and arrow in this region control the forewing colour pattern differences between D. chrysippus subspecies. We then show that the same chromosome has recently formed a neo-W that has spread through the contact zone within approximately 2,200 years. We also assembled the genome of the male-killing Spiroplasma, and find that it shows perfect genealogical congruence with the neo-W, suggesting that the neo-W has hitchhiked to high frequency as the male-killer has spread through the population. The complete absence of female crossing-over in the Lepidoptera causes whole-chromosome hitchhiking of a single neo-W haplotype, carrying a single allele of the BC supergene and dragging multiple non-synonymous mutations to high frequency. This has created a population of infected females that all carry the same recessive colour patterning allele, making the phenotypes of each successive generation highly dependent on uninfected male immigrants. Our findings show how hitchhiking can occur between the physically unlinked genomes of host and endosymbiont, with dramatic consequences.


Asunto(s)
Mariposas Diurnas/genética , Cromosomas de Insectos/genética , Cromosomas Sexuales/genética , Animales , Mariposas Diurnas/microbiología , Evolución Molecular , Femenino , Ligamiento Genético , Genoma/genética , Haplotipos , Masculino , Fenotipo , Spiroplasma/genética
15.
Proc Natl Acad Sci U S A ; 117(28): 16438-16447, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601213

RESUMEN

Chemosensory communication is essential to insect biology, playing indispensable roles during mate-finding, foraging, and oviposition behaviors. These traits are particularly important during speciation, where chemical perception may serve to establish species barriers. However, identifying genes associated with such complex behavioral traits remains a significant challenge. Through a combination of transcriptomic and genomic approaches, we characterize the genetic architecture of chemoperception and the role of chemosensing during speciation for a young species pair of Heliconius butterflies, Heliconius melpomene and Heliconius cydno We provide a detailed description of chemosensory gene-expression profiles as they relate to sensory tissue (antennae, legs, and mouthparts), sex (male and female), and life stage (unmated and mated female butterflies). Our results untangle the potential role of chemical communication in establishing barriers during speciation and identify strong candidate genes for mate and host plant choice behaviors. Of the 252 chemosensory genes, HmOBP20 (involved in volatile detection) and HmGr56 (a putative synephrine-related receptor) emerge as strong candidates for divergence in pheromone detection and host plant discrimination, respectively. These two genes are not physically linked to wing-color pattern loci or other genomic regions associated with visual mate preference. Altogether, our results provide evidence for chemosensory divergence between H. melpomene and H. cydno, two rarely hybridizing butterflies with distinct mate and host plant preferences, a finding that supports a polygenic architecture of species boundaries.


Asunto(s)
Mariposas Diurnas/genética , Evolución Molecular , Especiación Genética , Proteínas de Insectos/genética , Animales , Mariposas Diurnas/clasificación , Mariposas Diurnas/fisiología , Quimiotaxis , Femenino , Proteínas de Insectos/metabolismo , Masculino , Fenotipo , Sensación
16.
Proc Biol Sci ; 289(1979): 20220474, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35892212

RESUMEN

During courtship, male butterflies of many species produce androconial secretions containing male sex pheromones (MSPs) that communicate species identity and affect female choice. MSPs are thus likely candidates as reproductive barriers, yet their role in speciation remains poorly studied. Although Heliconius butterflies are a model system in speciation, their MSPs have not been investigated from a macroevolutionary perspective. We use GC/MS to characterize male androconial secretions in 33 of the 69 species in the Heliconiini tribe. We found these blends to be species-specific, consistent with a role in reproductive isolation. We detected a burst in blend diversification rate at the most speciose genus, Heliconius; a consequence of Heliconius and Eueides species using a fatty acid (FA) metabolic pathway to unlock more complex blends than basal Heliconiini species, whose secretions are dominated by plant-like metabolites. A comparison of 10 sister species pairs demonstrates a striking positive correlation between blend dissimilarity and range overlap, consistent with character displacement or reinforcement in sympatry. These results demonstrate for the first time that MSP diversification can promote reproductive isolation across this group of butterflies, showcasing how implementation of an ancestral trait, the co-option of the FA metabolic pathway for pheromone production, can facilitate rapid speciation.


Asunto(s)
Mariposas Diurnas , Atractivos Sexuales , Animales , Vías Biosintéticas , Femenino , Masculino , Feromonas/metabolismo , Atractivos Sexuales/metabolismo , Simpatría
17.
J Evol Biol ; 35(11): 1537-1547, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36196988

RESUMEN

Coupling of multiple barriers to gene-flow, such as divergent local adaptation and reproductive isolation, facilitates speciation. However, alleles at loci that contribute to barrier effects can be dissociated by recombination. Models of linkage between diverging alleles often consider elements that reduce recombination, such as chromosomal inversions and alleles that modify recombination rate between existing loci. In contrast, here, we consider the evolution of linkage due to the close proximity of loci on the same chromosome. Examples of such physical linkage exist in several species, but in other cases, strong associations are maintained without physical linkage. We use an individual-based model to study the conditions under which the physical linkage between loci controlling ecological traits and mating preferences might be expected to evolve. We modelled a single locus controlling an ecological trait that acts also as a mating cue. Mating preferences are controlled by multiple loci, formed by mutations that are randomly placed in the "genome", within varying distances from the ecological trait locus, allowing us to examine which genomic architectures spread across the population. Our model reveals that stronger physical linkage is favoured when mating preferences and selection are weaker. Under such conditions mating among divergent phenotypes is more frequent, and matching ecological trait and mating preference alleles are more likely to become dissociated by recombination, favouring the evolution of genetic linkage. While most theoretical studies on clustering of divergent loci focus on how physical linkage influences speciation, we show how physical linkage itself can arise, establishing conditions that can favour speciation.


Asunto(s)
Especiación Genética , Aislamiento Reproductivo , Ligamiento Genético , Flujo Génico , Fenotipo
18.
PLoS Biol ; 17(8): e3000394, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31469818

RESUMEN

Evolutionary biologists are increasingly using population genetic variation across genomes to address questions around the origin and ongoing evolution of species. Patterns of differentiation between closely related species are highly variable across the genome, and a wide variety of processes contribute to that variation. There is an emerging pattern of parallelism, whereby different species pairs in groups of related species show similar differentiation patterns across their genomes, offering an opportunity to test hypotheses regarding the processes underlying species differentiation. A recent study used both simulations and empirical data to investigate different forms of selection in a radiation of monkeyflowers. The parallel patterns emerged very rapidly after divergence and could not be readily explained by selection for removal of deleterious mutations but instead likely results from some combination of adaptive evolution, species incompatibilities, and ongoing gene flow. Overall, an emerging pattern is that there may be a surprising degree of predictability in the genetic architecture of species differences across groups of related species.


Asunto(s)
Flujo Génico , Mimulus , Genoma , Genómica
19.
PLoS Biol ; 17(2): e2006288, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30730876

RESUMEN

Hybridisation and introgression can dramatically alter the relationships among groups of species, leading to phylogenetic discordance across the genome and between populations. Introgression can also erode species differences over time, but selection against introgression at certain loci acts to maintain postmating species barriers. Theory predicts that species barriers made up of many loci throughout the genome should lead to a broad correlation between introgression and recombination rate, which determines the extent to which selection on deleterious foreign alleles will affect neutral alleles at physically linked loci. Here, we describe the variation in genealogical relationships across the genome among three species of Heliconius butterflies: H. melpomene (mel), H. cydno (cyd), and H. timareta (tim), using whole genomes of 92 individuals, and ask whether this variation can be explained by heterogeneous barriers to introgression. We find that species relationships vary predictably at the chromosomal scale. By quantifying recombination rate and admixture proportions, we then show that rates of introgression are predicted by variation in recombination rate. This implies that species barriers are highly polygenic, with selection acting against introgressed alleles across most of the genome. In addition, long chromosomes, which have lower recombination rates, produce stronger barriers on average than short chromosomes. Finally, we find a consistent difference between two species pairs on either side of the Andes, which suggests differences in the architecture of the species barriers. Our findings illustrate how the combined effects of hybridisation, recombination, and natural selection, acting at multitudes of loci over long periods, can dramatically sculpt the phylogenetic relationships among species.


Asunto(s)
Mariposas Diurnas/genética , Genoma de los Insectos , Recombinación Genética , Animales , Cromosomas de Insectos/genética , Flujo Génico , Genética de Población , Filogenia , Selección Genética , Especificidad de la Especie
20.
PLoS Biol ; 17(2): e2005902, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30730873

RESUMEN

The evolution of new species is made easier when traits under divergent ecological selection are also mating cues. Such ecological mating cues are now considered more common than previously thought, but we still know little about the genetic changes underlying their evolution or more generally about the genetic basis for assortative mating behaviors. Both tight physical linkage and the existence of large-effect preference loci will strengthen genetic associations between behavioral and ecological barriers, promoting the evolution of assortative mating. The warning patterns of Heliconius melpomene and H. cydno are under disruptive selection due to increased predation of nonmimetic hybrids and are used during mate recognition. We carried out a genome-wide quantitative trait locus (QTL) analysis of preference behaviors between these species and showed that divergent male preference has a simple genetic basis. We identify three QTLs that together explain a large proportion (approximately 60%) of the difference in preference behavior observed between the parental species. One of these QTLs is just 1.2 (0-4.8) centiMorgans (cM) from the major color pattern gene optix, and, individually, all three have a large effect on the preference phenotype. Genomic divergence between H. cydno and H. melpomene is high but broadly heterogenous, and admixture is reduced at the preference-optix color pattern locus but not the other preference QTLs. The simple genetic architecture we reveal will facilitate the evolution and maintenance of new species despite ongoing gene flow by coupling behavioral and ecological aspects of reproductive isolation.


Asunto(s)
Mariposas Diurnas/genética , Mariposas Diurnas/fisiología , Sitios de Carácter Cuantitativo/genética , Conducta Sexual Animal/fisiología , Animales , Cromosomas de Insectos/genética , Cortejo , Femenino , Masculino , Preferencia en el Apareamiento Animal/fisiología , Especificidad de la Especie , Simpatría/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA