Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Exp Bot ; 75(10): 3040-3053, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38310636

RESUMEN

Sugarcane (Saccharum spp.), a leading sugar and energy crop, is seriously impacted by drought stress. However, the molecular mechanisms underlying sugarcane drought resistance, especially the functions of epigenetic regulators, remain elusive. Here, we show that a S. spontaneum KDM4/JHDM3 group JmjC protein, SsJMJ4, negatively regulates drought-stress responses through its H3K27me3 demethylase activity. Ectopic overexpression of SsJMJ4 in Arabidopsis reduced drought resistance possibly by promoting expression of AtWRKY54 and AtWRKY70, encoding two negative regulators of drought stress. SsJMJ4 directly bound to AtWRKY54 and AtWRKY70, and reduced H3K27me3 levels at these loci to ensure their proper transcription under normal conditions. Drought stress down-regulated both transcription and protein abundance of SsJMJ4, which was correlated with the reduced occupancy of SsJMJ4 at AtWRKY54 and AtWRKY70 chromatin, increased H3K27me3 levels at these loci, as well as reduced transcription levels of these genes. In S. spontaneum, drought stress-repressed transcription of SsWRKY122, an ortholog of AtWRKY54 and AtWRKY70, was associated with increased H3K27me3 levels at these loci. Transient overexpression of SsJMJ4 in S. spontaneum protoplasts raised transcription of SsWRKY122, paralleled with reduced H3K27me3 levels at its loci. These results suggest that the SsJMJ4-mediated dynamic deposition of H3K27me3 is required for an appropriate response to drought stress.


Asunto(s)
Sequías , Proteínas de Plantas , Saccharum , Saccharum/genética , Saccharum/fisiología , Saccharum/metabolismo , Saccharum/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/fisiología , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Histonas/metabolismo , Histonas/genética
2.
Plant Cell ; 31(2): 430-443, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30712008

RESUMEN

Leaf senescence is governed by a complex regulatory network involving the dynamic reprogramming of gene expression. Age-dependent induction of senescence-associated genes (SAGs) is associated with increased levels of trimethylation of histone H3 at Lys4 (H3K4me3), but the regulatory mechanism remains elusive. Here, we found that JMJ16, an Arabidopsis (Arabidopsis thaliana) JmjC-domain containing protein, is a specific H3K4 demethylase that negatively regulates leaf senescence through its enzymatic activity. Genome-wide analysis revealed a widespread coordinated upregulation of gene expression and hypermethylation of H3K4me3 at JMJ16 binding genes associated with leaf senescence in the loss-of-function jmj16 mutant as compared with the wild type. Genetic analysis indicated that JMJ16 negatively regulates leaf senescence, at least partly through repressing the expression of positive regulators of leaf senescence, WRKY53 and SAG201 JMJ16 associates with WRKY53 and SAG201 and represses their precocious expression in mature leaves by reducing H3K4me3 levels at these loci. The protein abundance of JMJ16 gradually decreases during aging, which is correlated with increased H3K4me3 levels at WRKY53 and SAG201, suggesting that the age-dependent downregulation of JMJ16 is required for the precise transcriptional activation of SAGs during leaf senescence. Thus, JMJ16 is an important regulator of leaf senescence that demethylates H3K4 at SAGs in an age-dependent manner.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Factores de Transcripción/genética
3.
New Phytol ; 232(1): 221-236, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34197643

RESUMEN

Dimethylation of histone H3 at lysine 9 (H3K9me2) is associated with heterochromatinization and transcriptional gene silencing in plants. The activation of sets of genes by drought stress is correlated with reduced H3K9me2 levels, but the role of H3K9 methylation in the regulation of drought-stress responses remains elusive. Here, we show that the Jumonji domain-containing H3K9 demethylase JMJ27 positively regulates drought-stress responses through its histone demethylase activity. RNA-seq analysis identified JMJ27-regulated genes, including positive regulators of drought stress GALACTINOL SYNTHASE 2 (GOLS2) and RESPONSE TO DESICCATION 20 (RD20). Genetic analysis demonstrated that JMJ27 positively regulates drought-stress responses at least partly through GOLS2 and RD20. JMJ27 directly associated with GOLS2 and RD20, and protected these loci from silencing by reducing H3K9me2 levels under normal conditions. REGULATORY PARTICLE NON-ATPASE 1a (RPN1a), a subunit of the 26S proteasome, interacted with JMJ27 and negatively regulated JMJ27 accumulation. Drought stress diminished RPN1a abundance, resulting in increased JMJ27 abundance. The drought stress-promoted occupancy of JMJ27 at GOLS2 and RD20 chromatin may reinforce their transcriptional induction by locally reducing the H3K9me2 levels. These results indicate that the RPN1a-JMJ27 module precisely regulates dynamic H3K9me2 deposition plasticity, ensuring proper adaptation to drought stress in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desmetilación , Sequías , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji
4.
Proc Natl Acad Sci U S A ; 115(23): E5400-E5409, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784800

RESUMEN

Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47 Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Cromatina/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Frío , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Epigénesis Genética/genética , Epigenómica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo
5.
New Phytol ; 223(3): 1372-1387, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31038749

RESUMEN

Under dehydration in plants, antagonistic activities of histone 3 lysine 4 (H3K4) methyltransferase and histone demethylase maintain a dynamic and homeostatic state of gene expression by orientating transcriptional reprogramming toward growth or stress tolerance. However, the histone demethylase that specifically controls histone methylation homeostasis under dehydration stress remains unknown. Here, we document that a histone demethylase, JMJ17, belonging to the KDM5/JARID1 family, plays crucial roles in response to dehydration stress and abscisic acid (ABA) in Arabidopsis thaliana. jmj17 loss-of-function mutants displayed dehydration stress tolerance and ABA hypersensitivity in terms of stomatal closure. JMJ17 specifically demethylated H3K4me1/2/3 via conserved iron-binding amino acids in vitro and in vivo. Moreover, H3K4 demethylase activity of JMJ17 was required for dehydration stress response. Systematic combination of genome-wide chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) and RNA-sequencing (RNA-seq) analyses revealed that a loss-of-function mutation in JMJ17 caused an ectopic increase in genome-wide H3K4me3 levels and activated a plethora of dehydration stress-responsive genes. Importantly, JMJ17 bound directly to the chromatin of OPEN STOMATA 1 (OST1) and demethylated H3K4me3 for the regulation of OST1 mRNA abundance, thereby modulating the dehydration stress response. Our results demonstrate a new function of a histone demethylase under dehydration stress in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas , Mutación con Pérdida de Función/genética , Metilación , Especificidad de Órganos/genética , Fenotipo , Fracciones Subcelulares/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(51): E8335-E8343, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930298

RESUMEN

To cope with environmental stresses, plants often adopt a memory response upon primary stress exposure to facilitate a quicker and stronger reaction to recurring stresses. However, it remains unknown whether light is involved in the manifestation of stress memory. Proline accumulation is a striking metabolic adaptation of higher plants during various environmental stresses. Here we show that salinity-induced proline accumulation is memorable and HY5-dependent light signaling is required for such a memory response. Primary salt stress induced the expression of Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1), encoding a proline biosynthetic enzyme and proline accumulation, which were reduced to basal level during the recovery stage. Reoccurring salt stress-induced stronger P5CS1 expression and proline accumulation were dependent upon light exposure during the recovery stage. Further studies demonstrated that salt-induced transcriptional memory of P5CS1 is associated with the retention of increased H3K4me3 level at P5CS1 during the recovery stage. HY5 binds directly to light-responsive element, C/A-box, in the P5CS1 promoter. Deletion of the C/A-box or hy5 hyh mutations caused rapid reduction of H3K4me3 level at P5CS1 during the recovery stage, resulting in impairment of the stress memory response. These results unveil a previously unrecognized mechanism whereby light regulates salt-induced transcriptional memory via the function of HY5 in maintaining H3K4me3 level at the memory gene.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Glutamato-5-Semialdehído Deshidrogenasa/metabolismo , Luz , Complejos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sales (Química)/química , Estrés Fisiológico , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Glutamato-5-Semialdehído Deshidrogenasa/genética , Histonas/metabolismo , Complejos Multienzimáticos/genética , Mutación , Proteínas Nucleares/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de la radiación , Pirroles , Semillas/metabolismo , Transducción de Señal , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
7.
PLoS Genet ; 12(4): e1006016, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27128446

RESUMEN

COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ligasas/genética , Desarrollo de la Planta/genética , Ubiquitina-Proteína Ligasas/genética , Sustitución de Aminoácidos/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Ligasas/metabolismo , Luz , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteolisis , Plantones/genética , Plantones/crecimiento & desarrollo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética
8.
Plant Physiol ; 173(1): 655-667, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27852949

RESUMEN

The expression of genes with aberrant structure is prevented at both the transcriptional and posttranscriptional regulation levels. Aberrant gene silencing at the posttranscriptional level is well studied; however, it is not well understood how aberrant genes are silenced at the transcriptional level. In this study, through genetic screening a transgenic report line that harbors an aberrant gene (35S-LUC, lacking 3'-untranslated region [3'-UTR]) and lacks luciferase (LUC) activity, we identify that the small ubiquitin-like modifier (SUMO) protease OTS1 gene is required for maintaining the silence of the reporter 35S-LUC and an endogenous mutator-like element MULE-F19G14 at the transcriptional level, which requires DNA-dependent RNA polymerase (Pol) V and DDR complex, but not Pol IV. The increased transcripts in ots1 mutants are terminated by the 3'-UTRs of downstream genes. In addition to ots1 mutations, mutations in several known or putative SUMO proteases and two SUMO E3 ligases, SIZ1 and MMS21, have similar effects on this silencing regulation. Taken together, our results reveal that the enzymes involved in the SUMOylation process restrain aberrant gene transcription by using a downstream gene 3'-UTR, and this regulation requires a functional Pol V-dependent pathway in Arabidopsis (Arabidopsis thaliana).


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cisteína Endopeptidasas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones no Traducidas 3' , ATPasas Asociadas con Actividades Celulares Diversas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cisteína Endopeptidasas/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Ligasas/genética , Ligasas/metabolismo , Redes y Vías Metabólicas , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente , Sumoilación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Physiol ; 175(4): 1703-1719, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29066667

RESUMEN

In plants, the posttranslational modification small ubiquitin-like modifier (SUMO) is involved in regulating several important developmental and cellular processes, including flowering time control and responses to biotic and abiotic stresses. Here, we report two proteases, SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2, that regulate male and female gamete and embryo development and remove SUMO from proteins in vitro and in vivo. spf1 mutants exhibit abnormal floral structures and embryo development, while spf2 mutants exhibit largely a wild-type phenotype. However, spf1 spf2 double mutants exhibit severe abnormalities in microgametogenesis, megagametogenesis, and embryo development, suggesting that the two genes are functionally redundant. Mutation of SPF1 and SPF2 genes also results in misexpression of generative- and embryo-specific genes. In vitro, SPF1 and SPF2 process SUMO1 precursors into a mature form, and as expected in vivo, spf1 and spf2 mutants accumulate SUMO conjugates. Using a yeast two-hybrid screen, we identified EMBRYO SAC DEVELOPMENT ARREST9 (EDA9) as an SPF1-interacting protein. In vivo, we demonstrate that EDA9 is sumolyated and that, in spf1 mutants, EDA9-SUMO conjugates increase in abundance, demonstrating that EDA9 is a substrate of SPF1. Together, our results demonstrate that SPF1 and SPF2 are two SUMO proteases important for plant development in Arabidopsis (Arabidopsis thaliana).


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Mutación , Proteínas de Plantas/genética , Polen/genética , Polen/fisiología , Reproducción/genética , Reproducción/fisiología
10.
J Integr Plant Biol ; 60(10): 924-937, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29786952

RESUMEN

The small ubiquitin-related modifier (SUMO) modification plays an important role in the regulation of abscisic acid (ABA) signaling, but the function of the SUMO protease, in ABA signaling, remains largely unknown. Here, we show that the SUMO protease, ASP1 positively regulates ABA signaling. Mutations in ASP1 resulted in an ABA-insensitive phenotype, during early seedling development. Wild-type ASP1 successfully rescued, whereas an ASP1 mutant (C577S), defective in SUMO protease activity, failed to rescue, the ABA-insensitive phenotype of asp1-1. Expression of ABI5 and MYB30 target genes was attenuated in asp1-1 and our genetic analyses revealed that ASP1 may function upstream of ABI5 and MYB30. Interestingly, ASP1 accumulated upon ABA treatment, and ABA-induced accumulation of ABI5 (a positive regulator of ABA signaling) was abolished, whereas ABA-induced accumulation of MYB30 (a negative regulator of ABA signaling) was increased in asp1-1. These findings support the hypothesis that increased levels of ASP1, upon ABA treatment, tilt the balance between ABI5 and MYB30 towards ABI5-mediated ABA signaling.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Cisteína Endopeptidasas/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína Endopeptidasas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantones/genética , Transducción de Señal/efectos de los fármacos
11.
J Integr Plant Biol ; 59(1): 15-29, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27925396

RESUMEN

The initiation of flowering is tightly regulated by the endogenous and environment signals, which is crucial for the reproductive success of flowering plants. It is well known that autonomous and vernalization pathways repress transcription of FLOWERING LOCUS C (FLC), a focal floral repressor, but how its protein stability is regulated remains largely unknown. Here, we found that mutations in a novel Arabidopsis SUMO protease 1 (ASP1) resulted in a strong late-flowering phenotype under long-days, but to a lesser extent under short-days. ASP1 localizes in the nucleus and exhibited a SUMO protease activity in vitro and in vivo. The conserved Cys-577 in ASP1 is critical for its enzymatic activity, as well as its physiological function in the regulation of flowering time. Genetic and gene expression analyses demonstrated that ASP1 promotes transcription of positive regulators of flowering, such as FT, SOC1 and FD, and may function in both CO-dependent photoperiod pathway and FLC-dependent pathways. Although the transcription level of FLC was not affected in the loss-of-function asp1 mutant, the protein stability of FLC was increased in the asp1 mutant. Taken together, this study identified a novel bona fide SUMO protease, ASP1, which positively regulates transition to flowering at least partly by repressing FLC protein stability.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Cisteína Endopeptidasas/metabolismo , Flores/fisiología , Proteínas de Dominio MADS/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína Endopeptidasas/genética , Epistasis Genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Mutación/genética , Fenotipo , Fotoperiodo , Estabilidad Proteica , Transporte de Proteínas , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Fracciones Subcelulares/metabolismo
12.
J Integr Plant Biol ; 59(1): 2-14, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27762067

RESUMEN

SIZ1 is a small ubiquitin-related modifier (SUMO) E3 ligase that mediates post-translational SUMO modification of target proteins and thereby regulates developmental processes and hormonal and environmental stress responses in Arabidopsis. However, the role of SUMO E3 ligases in crop plants is largely unknown. Here, we identified and characterized two Glycine max (soybean) SUMO E3 ligases, GmSIZ1a and GmSIZ1b. Expression of GmSIZ1a and GmSIZ1b was induced in response to salicylic acid (SA), heat, and dehydration treatment, but not in response to cold, abscisic acid (ABA), and NaCl treatment. Although GmSIZ1a was expressed at higher levels than GmSIZ1b, both genes encoded proteins with SUMO E3 ligase activity in vivo. Heterologous expression of GmSIZ1a or GmSIZ1b rescued the mutant phenotype of Arabidopsis siz1-2, including dwarfism, constitutively activated expression of pathogen-related genes, and ABA-sensitive seed germination. Simultaneous downregulation of GmSIZ1a and GmSIZ1b (GmSIZ1a/b) using RNA interference (RNAi)-mediated gene silencing decreased heat shock-induced SUMO conjugation in soybean. Moreover, GmSIZ1RNAi plants exhibited reduced plant height and leaf size. However, unlike Arabidopsis siz1-2 mutant plants, flowering time and SA levels were not significantly altered in GmSIZ1RNAi plants. Taken together, our results indicate that GmSIZ1a and GmSIZ1b mediate SUMO modification and positively regulate vegetative growth in soybean.


Asunto(s)
Glycine max/enzimología , Glycine max/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Núcleo Celular/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/genética , Transporte de Proteínas , Reacción en Cadena en Tiempo Real de la Polimerasa , Ácido Salicílico/metabolismo , Glycine max/anatomía & histología , Glycine max/genética , Fracciones Subcelulares/metabolismo
13.
Plant Cell ; 25(11): 4708-24, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24285786

RESUMEN

Multiple transcription factors (TFs) play essential roles in plants under abiotic stress, but how these multiple TFs cooperate in abiotic stress responses remains largely unknown. In this study, we provide evidence that the NAC (for NAM, ATAF1/2, and CUC2) TF ANAC096 cooperates with the bZIP-type TFs ABRE binding factor and ABRE binding protein (ABF/AREB) to help plants survive under dehydration and osmotic stress conditions. ANAC096 directly interacts with ABF2 and ABF4, but not with ABF3, both in vitro and in vivo. ANAC096 and ABF2 synergistically activate RD29A transcription. Our genome-wide gene expression analysis revealed that a major proportion of abscisic acid (ABA)-responsive genes are under the transcriptional regulation of ANAC096. We found that the Arabidopsis thaliana anac096 mutant is hyposensitive to exogenous ABA and shows impaired ABA-induced stomatal closure and increased water loss under dehydration stress conditions. Furthermore, we found the anac096 abf2 abf4 triple mutant is much more sensitive to dehydration and osmotic stresses than the anac096 single mutant or the abf2 abf4 double mutant. Based on these results, we propose that ANAC096 is involved in a synergistic relationship with a subset of ABFs for the transcriptional activation of ABA-inducible genes in response to dehydration and osmotic stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Estrés Fisiológico , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Datos de Secuencia Molecular , Mutación , Presión Osmótica , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
J Integr Plant Biol ; 58(1): 91-103, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25989254

RESUMEN

Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/efectos de la radiación , Clorofila/biosíntesis , Fototransducción/efectos de la radiación , Proteínas Nucleares/metabolismo , Fitocromo/metabolismo , Inmunidad de la Planta/efectos de la radiación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Muerte Celular/efectos de la radiación , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Fototransducción/genética , Modelos Biológicos , Mutación/genética , Proteínas Nucleares/genética , Fenotipo , Fitocromo/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/fisiología , Ácido Salicílico/metabolismo , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de la radiación
15.
Plant Cell ; 24(5): 2184-99, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22582100

RESUMEN

The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via ß-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different ß-glucosidase proteins produce ABA from ABA-GE and how the multiple ABA production pathways are coordinated to increase ABA levels. Here, we report that a previously undiscovered ß-glucosidase homolog, BG2, produced ABA by hydrolyzing ABA-GE and plays a role in osmotic stress response. BG2 localized to the vacuole as a high molecular weight complex and accumulated to high levels under dehydration stress. BG2 hydrolyzed ABA-GE to ABA in vitro. In addition, BG2 increased ABA levels in protoplasts upon application of exogenous ABA-GE. Overexpression of BG2 rescued the bg1 mutant phenotype, as observed for the overexpression of NCED3 in bg1 mutants. Multiple Arabidopsis bg2 alleles with a T-DNA insertion in BG2 were more sensitive to dehydration and NaCl stress, whereas BG2 overexpression resulted in enhanced resistance to dehydration and NaCl stress. Based on these observations, we propose that, in addition to the de novo biosynthesis, ABA is produced in multiple organelles by organelle-specific ß-glucosidases in response to abiotic stresses.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulasas/metabolismo , Vacuolas/enzimología , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Celulasas/genética , Desecación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Ósmosis/fisiología , Cloruro de Sodio/farmacología
16.
Plant Physiol ; 162(2): 1030-41, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23656895

RESUMEN

Arabidopsis (Arabidopsis thaliana) CYCLIN-DEPENDENT KINASE Ds (CDKDs) phosphorylate the C-terminal domain of the largest subunit of RNA polymerase II. Arabidopsis CYCLIN H;1 (CYCH;1) interacts with and activates CDKDs; however, the physiological function of CYCH;1 has not been determined. Here, we report that CYCH;1, which is localized to the nucleus, positively regulates blue light-induced stomatal opening. Reduced-function cych;1 RNA interference (cych;1 RNAi) plants exhibited a drought tolerance phenotype. CYCH;1 is predominantly expressed in guard cells, and its expression was substantially down-regulated by dehydration. Transpiration of intact leaves was reduced in cych;1 RNAi plants compared with the wild-type control in light but not in darkness. CYCH;1 down-regulation impaired blue light-induced stomatal opening but did not affect guard cell development or abscisic acid-mediated stomatal closure. Microarray and real-time polymerase chain reaction analyses indicated that CYCH;1 did not regulate the expression of abscisic acid-responsive genes or light-induced stomatal opening signaling determinants, such as MYB60, MYB61, Hypersensitive to red and blue1, and Protein phosphatase7. CYCH;1 down-regulation induced the expression of redox homeostasis genes, such as LIPOXYGENASE3 (LOX3), LOX4, ARABIDOPSIS GLUTATHIONE PEROXIDASE 7 (ATGPX7), EARLY LIGHT-INDUCIBLE PROTEIN1 (ELIP1), and ELIP2, and increased hydrogen peroxide production in guard cells. Furthermore, loss-of-function mutations in CDKD;2 or CDKD;3 did not affect responsiveness to drought stress, suggesting that CYCH;1 regulates the drought stress response in a CDKD-independent manner. We propose that CYCH;1 regulates blue light-mediated stomatal opening by controlling reactive oxygen species homeostasis.


Asunto(s)
Arabidopsis/fisiología , Ciclina H/metabolismo , Estomas de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclina H/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Transpiración de Plantas , Plantas Modificadas Genéticamente , Interferencia de ARN
17.
Plant Cell ; 22(12): 4128-41, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21169508

RESUMEN

A goal of modern agriculture is to improve plant drought tolerance and production per amount of water used, referred to as water use efficiency (WUE). Although stomatal density has been linked to WUE, the causal molecular mechanisms have yet to be determined. Arabidopsis thaliana GT-2 LIKE 1 (GTL1) loss-of-function mutations result in increased water deficit tolerance and higher integrated WUE by reducing daytime transpiration without a demonstrable reduction in biomass accumulation. gtl1 plants had higher instantaneous WUE that was attributable to ~25% lower transpiration and stomatal conductance but equivalent CO(2) assimilation. Lower transpiration was associated with higher STOMATAL DENSITY AND DISTRIBUTION1 (SDD1) expression and an ~25% reduction in abaxial stomatal density. GTL1 expression occurred in abaxial epidermal cells where the protein was localized to the nucleus, and its expression was downregulated by water stress. Chromatin immunoprecipitation analysis indicated that GTL1 interacts with a region of the SDD1 promoter that contains a GT3 box. An electrophoretic mobility shift assay was used to determine that the GT3 box is necessary for the interaction between GTL1 and the SDD1 promoter. These results establish that GTL1 negatively regulates WUE by modulating stomatal density via transrepression of SDD1.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Arabidopsis/fisiología , Regulación hacia Abajo/fisiología , Sequías , Estomas de Plantas/metabolismo , Serina Endopeptidasas/genética , Agua/metabolismo , Proteínas de Arabidopsis/genética , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica de las Plantas/fisiología , Microscopía Fluorescente , Mutación , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Plant Physiol ; 155(2): 1000-12, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21156857

RESUMEN

Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Ligasas/metabolismo , Fosfatos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ligasas/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfatos/deficiencia , Ftalimidas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/enzimología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , Plantones/crecimiento & desarrollo
19.
Proc Natl Acad Sci U S A ; 106(13): 5418-23, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19276109

RESUMEN

SUMO (small ubiquitin-related modifier) conjugation (i.e., sumoylation) to protein substrates is a reversible posttranslational modification that regulates signaling by modulating transcription factor activity. This paper presents evidence that the SUMO E3 ligase SIZ1 negatively regulates abscisic acid (ABA) signaling, which is dependent on the bZIP transcripton factor ABI5. Loss-of-function T-DNA insertion siz1-2 and siz1-3 mutations caused ABA hypersensitivity for seed germination arrest and seedling primary root growth inhibition. Furthermore, expression of genes that are ABA-responsive through ABI5-dependent signaling (e.g., RD29A, Rd29B, AtEm6, RAB18, ADH1) was hyperinduced by the hormone in siz1 seedlings. abi5-4 suppressed ABA hypersensitivity caused by siz1 (siz1-2 abi5-4), demonstrating an epistatic genetic interaction between SIZ1 and ABI5. A K391R substitution in ABI5 [ABI5(K391R)] blocked SIZ1-mediated sumoylation of the transcription factor in vitro and in Arabidopsis protoplasts, indicating that ABI5 is sumoylated through SIZ1 and that K391 is the principal site for SUMO conjugation. In abi5-4 plants, ABI5(K391R) expression caused greater ABA hypersensitivity (gene expression, seed germination arrest and primary root growth inhibition) compared with ABI5 expression. Together, these results establish that SIZ1-dependent sumoylation of ABI5 attenuates ABA signaling. The double mutant siz1-2 afp-1 exhibited even greater ABA sensitivity than the single mutant siz1, suggesting that SIZ1 represses ABI5 signaling function independent of AFP1.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ligasas/fisiología , Transducción de Señal , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Ligasas/genética , Ligasas/metabolismo , Mutación , Raíces de Plantas/crecimiento & desarrollo , Proteína SUMO-1 , Ubiquitina-Proteína Ligasas
20.
Plant J ; 61(2): 223-33, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19843317

RESUMEN

In Arabidopsis, CORYNE (CRN), a new member of the receptor kinase family, was recently isolated as a key player involved in the CLAVATA3 (CLV3) signaling pathway, thereby playing an important role in regulating the development of shoot and root apical meristems. However, the precise relationships among CLAVATA1 (CLV1), CLAVATA2 (CLV2), and CRN receptors remain unclear. Here, we demonstrate the subcellular localization of CRN and analyze the interactions among CLV1, CLV2, and CRN using firefly luciferase complementation imaging (LCI) assays in both Arabidopsis mesophyll protoplasts and Nicotiana benthamiana leaves. Fluorescence targeting showed that CRN was localized to the plasma membrane. The LCI assays coupled with co-immunoprecipitation assays demonstrated that CLV2 can directly interact with CRN in the absence of CLV3. Additional LCI assays showed that CLV1 did not interact with CLV2, but can interact weakly with CRN. We also found that CLV1 can interact with CLV2-CRN heterodimers, implying that these three proteins may form a complex. Moreover, CRN, rather than CLV1 and CLV2, was able to form homodimers without CLV3 stimulation. Taken together, our results add direct evidence to the newly proposed two-parallel receptor pathways model and therefore provide new insights into the CLV3 signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Western Blotting , Membrana Celular/metabolismo , Inmunoprecipitación , Luciferasas/genética , Luciferasas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Microscopía Confocal , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas , Protoplastos/citología , Protoplastos/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Receptores de Superficie Celular , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA