Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Res ; 214(Pt 2): 113837, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35810812

RESUMEN

A furfural residue-derived activated carbon (AC) supported black-TiO2 photocatalyst was successfully prepared by ultrasonic-assisted sol-gel treatment (USG) and solvothermal treatment (ST) combined with microwave-assisted heating (MH). The prepared composites were characterized and evaluated based on the degradation of tetracycline hydrochloride (TC) under ultraviolet (UV) illumination. The average TiO2 nanoparticle size of the as-synthesized catalysts was between 9 and 11 nm. The bandgap of TiO2-USGM was 1.6 eV, much lower than that of other reference catalysts. Organic carbon and AC in the catalyst play positive roles in reducing the band gap (e.g. 1.6∼2.6 eV) and improving visible-light absorption. The oxygen vacancies are responsible for UV-visible absorption. Adding AC into black TiO2 resulted in a lower degree of recombination of photogenerated electrons. Mott-Schottky plots showed that AC-containing TiO2@AC-STM reduced the value of conduction band value from -0.59 eV to -0.24 eV, which is beneficial to photogenerated electrons. Compared with TiO2, the Ti-O-C and Ti-C- in TiO2@AC remarkably improved the adsorption and catalytic efficiency of TC. In a near-neutral pH environment, TiO2@AC-STM and TiO2@AC-USGM exhibited high removal efficiencies (88.0% and 75.7%, respectively) and degradation rates (0.0418 and 0.0302 µmol/g/s, respectively) at a catalyst load of 0.25 g/L. Notably, the catalyst can be effectively used over a wide range of pH (6-9). The solution pH after treatment was close to neutral, which is advantageous for wastewater treatment. The activation energies were found to be approximately 3.47 kJ/mol. The thermodynamic parameters showed that the photodegradation process was non-spontaneous and endothermic. Based on the trapping experiments, O2⋅- was mainly responsible for TC photodegradation over TiO2@AC-STM, followed by h+. The TC degradation pathways and catalyst stability were also investigated. Biomass-derived carbon-supported catalysts have great potential for waste biomass utilization as green, and low-cost catalysts.


Asunto(s)
Carbón Orgánico , Tetraciclina , Antibacterianos , Catálisis , Carbón Orgánico/química , Calefacción , Microondas , Fotólisis , Titanio/química
2.
J Nanobiotechnology ; 20(1): 429, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175999

RESUMEN

Despite many nano-based strategies devoted to delivering cisplatin for tumor therapy, its clinical benefits are compromised by poor tissue penetration and limited DNA adducts formation of the drug. Herein, a cisplatin loading nanomotor based janus structured Ag-polymer is developed for cisplatin delivery of deeper tissue and increased DNA adducts formation. The nanomotor displayed a self-propelled tumor penetration fueled by hydrogen peroxide (H2O2) in tumor tissues, which is catalytically decomposed into a large amount of oxygen bubbles by Ag nanoparticles (NPs). Notably, cisplatin could elevate the intracellular H2O2 level through cascade reactions, further promote the degradation of Ag NPs accompanied with the Ag+ release, which could downregulate intracellular Cl- through the formation of AgCl precipitate, thereby enhancing cisplatin dechlorination and Pt-DNA formation. Moreover, polymer can also inhibit the activity of ALKBH2 (a Fe2+-dependent DNA repair enzyme) by chelating intracellular Fe2+ to increase the proportion of irreparable Pt-DNA cross-links. It is found that deep tissue penetration, as well as the increased formation and maintenance of Pt-DNA adducts induced by the nanomotor afford 80% of tumor growth inhibition with negligible toxicity. This work provides an important perspective of resolving chemotherapeutic barriers for boosting cisplatin therapy.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias , Antineoplásicos/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , ADN/metabolismo , Aductos de ADN/uso terapéutico , Humanos , Peróxido de Hidrógeno , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Oxígeno , Polímeros/uso terapéutico , Plata/uso terapéutico
3.
Nanotechnology ; 32(1): 015301, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33078716

RESUMEN

Clinical data shows that antitumor treatments are often ineffective if tumor cells have metastasized. To gain an effective antitumor therapeutic effect, in this report, the tumor cell was limited to the primary site and simultaneously ablated by chemotherapy. Considering the extremely complicated process of cancer metastasis, we seek to comprehensively suppress tumor metastases at both micro and macro levels, which closely link to migration and interact with each other. At the micro level, the motility of the tumor cell was decreased via accelerating mitochondria fusion. At the macro level, the unfavorable hypoxia environment was improved. A liposome-based multifunctional nanomedicine was designed by coloading latrunculin B (LAT-B), an inhibitor of actin polymerization, and doxorubicin (DOX) into the hydrophobic bilayers and aqueous cavity, respectively. Meanwhile, an oxygen reservoir named perfluoropentane (PFP) was encapsulated into the liposome core to fulfill synergistic treatment of metastatic tumors. In this paper, we demonstrated that the metastasis of the tumor cell could be effectively inhibited by LAT-B through promoting mitochondria fusion without affecting its function, making it as an encouraging candidate for effective anti-metastasis therapy. Meanwhile, we found that the combination of LAT-B and DOX shows a synergistic effect against tumors because the combined effect of these two drugs cover the entire cell proliferation process. In a word, this report presents a potential improvement in the treatment of metastatic cancer.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Doxorrubicina/farmacología , Neoplasias/tratamiento farmacológico , Tiazolidinas/farmacología , Actinas/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Sinergismo Farmacológico , Humanos , Liposomas , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Tiazolidinas/administración & dosificación , Tiazolidinas/uso terapéutico
4.
Nano Lett ; 19(6): 3505-3518, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31034238

RESUMEN

Despite recent advances in enhancing photodynamic therapy efficacy, high-efficiency reactive oxygen species (ROS)-based therapy approach, especially in malignancy tumor treatment, remains challenging. Relieving the hypoxia of tumor tissue has been considered to be an attractive strategy for enhancing ROS-based treatment effect. Nevertheless, it is frequently neglected that the hypoxic regions are usually located deep in the tumors and therefore are usually inaccessible. To address these limitations, herein we constructed a sequential intercellular delivery system (MFLs/LAOOH@DOX) that consists of a membrane fusion liposomes (MFLs) doped with linoleic acid hydroperoxide (LAOOH) in the lipid bilayer and antitumor doxorubicin (DOX) encapsulated inside. In this report, LAOOH, one of the primary products of lipid peroxidation in vivo, was selected as ROS-generated agent herein, which depends on Fe2+ rather than oxygen and other external stimuli to produce ROS. Upon the enhanced permeation and retention effect, MFLs/LAOOH@DOX first fused with tumor cell membranes in the perivascular region in synchrony with selective delivery of LAOOH into the plasma membrane and the on-demand intracellular release of DOX. By hitchhiking with extracellular vesicles, LAOOH, as a cell membrane natural ingredient, spread gradually to neighboring cells and throughout the entire tumor eventually. Combined with subsequent administration of nano Fe3O4, ROS was specifically generated on the tumor cell membrane by LAOOH throughout the tumor tissues. This study offers a new method to enhance ROS-based antitumor treatment efficiency.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/análogos & derivados , Ácidos Linoleicos/administración & dosificación , Peróxidos Lipídicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Animales , Antibióticos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Femenino , Ácidos Linoleicos/uso terapéutico , Peróxidos Lipídicos/uso terapéutico , Ratones Endogámicos BALB C , Neoplasias/metabolismo , Polietilenglicoles/administración & dosificación , Polietilenglicoles/uso terapéutico , Pez Cebra
5.
Waste Manag ; 167: 122-134, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257326

RESUMEN

Co-pyrolysis of dyeing sludge (DS) and pine sawdust (PS) was carried out in a fluidized bed pyrolyser. The results revealed that addition of PS increased the yields of condensate and gas, and dramatically improved pore structure of co-pyrolysis char, enhancing immobilization of the metals, nutrient and pollution elements. Catalysts (Na-ZSM-5 and HZSM-5) significantly reduced tar and coke, strengthened the integrity of pore structure. Yield of nitrogen-containing compounds declined sharply from 88.66% to 8.14% when 25% of PS was added. Addition of 50% PS promoted ring opening to generate chain compounds and abundant oxygenates (such as ketones, aldehydes and carboxylic acids) in pyrolysis oil (PO) at 650 °C. Correspondingly, yield of gaseous products was inhibited except CO2 and H2 when PS content was dominant. The catalysts greatly increased yield of gaseous products by enhancing primary and secondary cracking depending on different feedstocks and catalysts (e.g., DS over Na-ZSM-5 and PS over HZSM-5). The maximum energy efficiency (69.75%) was obtained at 650 °C when 75% PS was added.


Asunto(s)
Calor , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Pirólisis , Gases/análisis , Madera/química
6.
Chemosphere ; 344: 140406, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37827464

RESUMEN

Metals-loaded (Fe3+, Cu2+ and Zn2+) activated carbons (M@AC) with different loading ratios (0.1%, 0.5%, 1%, 5% and 10%) were prepared and employed for catalytic degradation of dye model compounds (crystal violet (CV) and methyl orange (MO)) in wastewater by heterogeneous Fenton-like technique. Compared with Cu@AC and Zn@AC, 0.5% Fe3+ loaded AC (0.5Fe@AC) had better catalytic activity for dyes degradation. The effects of dyes initial concentration, catalyst dosage, pH and hydrogen peroxide (H2O2) volume on the catalytic degradation process were investigated. Cyclic performance, stability of 0.5Fe@AC and iron leaching were explored. Degradation kinetics were well fitted to the pseudo-second-order model (Langmuir-Hinshelwood). Almost complete decolorization (99.7%) of 400 mg L-1 CV was achieved after 30 min reaction under the conditions of CV volume (30 mL), catalyst dosage (0.05 g), H2O2 volume (1 mL) and pH (7.7). Decolorization of MO reached 98.2% under the same conditions. The abilities of pyrolysis char (PC) of dyeing sludge (DS) and metal loaded carbon to remove dye pollutants were compared. The intermediate products were analyzed and the possible degradation pathway was proposed. This study provided an insight into catalytic degradation of triphenylmethane- and aromatic azo-based substances, and utilization of sludge char.


Asunto(s)
Violeta de Genciana , Aguas del Alcantarillado , Peróxido de Hidrógeno/química , Compuestos Azo/química , Metales , Colorantes/química , Catálisis
7.
Sci Total Environ ; 806(Pt 4): 150903, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34653460

RESUMEN

Co-pyrolysis of sophora wood (SW) and polyvinyl chloride (PVC) was conducted in a microwave reactor at different temperatures and different mixing ratios, and the transformation and distribution of chlorine in pyrolysis products were investigated. Microwave pyrolysis is a simple and efficient technique with better heating uniformity and process controllability than conventional heating. Compared with PVC pyrolysis, the addition of SW significantly reduced CO2 yield and greatly increased the yield of CO. The yield and quality of pyrolysis oil were effectively improved by SW, and the content of chlorine-containing compounds in the oil was suppressed to <1% at low temperatures (<550 °C). Co-pyrolysis of SW and PVC reduced the chlorine emissions from 59.07% to 28.09% and promoted the retention of chlorine in char (from 0.33% to 4.72%). Cellulose, hemicellulose, and lignin were co-pyrolyzed with PVC to investigate their effects on chlorine distribution. The experiments demonstrated that lignin had the most significant effects on reducing gas phase chlorine emission and achieving chlorine immobilization, and chlorine mainly existed in the form of sodium chloride in the char of lignin-PVC co-pyrolysis. Hence co-pyrolysis of lignocellulosic biomass and PVC provides a practical pathway for utilization of PVC waste in an environmentally friendly manner, realizing efficient chlorine retention and significantly reducing chlorine-related emissions.


Asunto(s)
Cloruro de Polivinilo , Pirólisis , Biomasa , Cloro , Calor , Microondas
8.
Antibiotics (Basel) ; 11(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36290064

RESUMEN

Acinetobacter baumannii is a multidrug-resistant and invasive pathogen associated with the etiopathology of both an increasing number of nosocomial infections and is of relevance to poultry production systems. Multidrug-resistant Acinetobacter baumannii has been reported in connection to severe challenges to clinical treatment, mostly due to an increased rate of resistance to carbapenems. Amid the possible strategies aiming to reduce the insurgence of antimicrobial resistance, phage therapy has gained particular importance for the treatment of bacterial infections. This review summarizes the different phage-therapy approaches currently in use for multiple-drug resistant Acinetobacter baumannii, including single phage therapy, phage cocktails, phage-antibiotic combination therapy, phage-derived enzymes active on Acinetobacter baumannii and some novel technologies based on phage interventions. Although phage therapy represents a potential treatment solution for multidrug-resistant Acinetobacter baumannii, further research is needed to unravel some unanswered questions, especially in regard to its in vivo applications, before possible routine clinical use.

9.
Chemosphere ; 301: 134803, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35508264

RESUMEN

In this study, a single-step pyrolysis approach was developed to directly convert oily sludge (OS) with high iron content into a magnetic iron-char catalyst for organic dyes removal. Magnetic iron-char catalysts were employed to degrade crystal violet (CV), methylene blue (MB), and sunset yellow (SY). The OC800 iron-char catalyst prepared from OS was not only rich in iron (mainly stable Fe3O4), but also showed favorable pore structures. Effects of operation parameters like temperature, H2O2 dosage, and pH on dye removal based on Fenton degradation were examined. In OC800 Fenton system (0.5 mL H2O2, 500 mg/L dye concentration, and pH = 2 in 50 mL solution), the maximum dye removal capacities of SY, CV, and MB were 83.61, 639.19, and 414.25 mg/g, respectively. In dyes degradation experiments, the prepared catalyst could be reused (more than 3 successive cycles) due to higher stability and less leaching of iron. One-step pyrolysis of OS with high iron content thereby represents a promising approach to transform sludge waste to functional biochar that removes hazardous dyes.


Asunto(s)
Pirólisis , Aguas del Alcantarillado , Catálisis , Carbón Orgánico , Colorantes , Peróxido de Hidrógeno/química , Hierro/química , Azul de Metileno
10.
Sci Total Environ ; 838(Pt 2): 155412, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35569655

RESUMEN

This study investigated the effect of temperature on pyrolysis of soapstock in a fluidized bed reactor, and the characterization of soapstock chars (SCs) and pyrolysis oils (POs) were analyzed. TGA, TG-FTIR, TG-MS, and Py-GCMS were employed to investigate characteristics of SS pyrolysis. Experimental results indicated that the yield of SC decreased with increasing temperature. Pyrolysis oil (PO) yield reached the maximum of 21.05 wt% at 600 °C and the yield of non-condensable gas varied with temperatures. The content of carbon, hydrogen and nitrogen distributed in the SC decreased with the increasing temperature, and sulfur tended to be retained in SC during pyrolysis with the distribution ratio of 0.55-0.62. Ketones, alcohols and hydrocarbons were the dominate substances in PO, and higher temperature promoted the production of short-chain alkanes and the conversion of alkenes to benzene derivatives. SS pyrolysis can be divided into three stages. Stage I was mainly the evaporation of free water and light organics in the raw material. Decomposition and conversion of organics mainly occurred at stage II. Stage III was the decomposition of CaCO3 and secondary cracking of residual organics. Ca2+ delayed the pyrolysis reaction of fatty acids and promoted decarboxylation which was the main deoxygenation pathway, and alkene production. This study provided a theoretical basis for the application of soapstock thermochemical treatment. It is of great significance for the quality improvement of PO and pollution control for pyrolysis processes.


Asunto(s)
Aceites de Plantas , Pirólisis , Biocombustibles , Calor , Temperatura
11.
Front Microbiol ; 12: 621866, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484130

RESUMEN

The emergence of multidrug-resistant Staphylococcus epidermidis (S. epidermidis) dwarfs the current antibiotic development and calls for the discovery of new antibacterial agents. Aloe-emodin is a plant-derived compound that holds promise to battle against these strains. This work reports the antimicrobial activity of aloe-emodin against S. epidermidis and other Gram-positive pathogenic species, manifesting minimum inhibitory concentrations (MICs) and minimum bactericidal concentration (MBCs) around 4-32 and 32-128 µg/mL, respectively. For Gram-negative bacteria tested, the MICs and MBCs of aloe-emodin were 128-256 and above 1024 µg/mL, respectively. Aloe-emodin at the MBC for 4 h eradicated 96.9% of S. epidermidis cells. Aloe-emodin treatment led to deformities in the morphology of S. epidermidis cells and the destroy of the selective permeability of the cell membranes. Analysis of the transcriptional profiles of aloe-emodin-treated cells revealed changes of genes involved in sulfur metabolism, L-lysine and peptidoglycan biosynthesis, and biofilm formation. Aloe-emodin therefore can safely control Gram-positive bacterial infections and proves to target the bacterial outer membrane.

12.
Comput Struct Biotechnol J ; 19: 6179-6190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900131

RESUMEN

Acyl-homoserine lactone (AHL) is the most studied autoinducer in gram-negative bacteria controlling infections of various pathogens. Quenching of AHL signaling by inhibiting AHL synthesis or AHL-receptor binding via small molecular chemicals or enzymatically degrading AHL is commonly used to block bacterial infections. Here, we describe a new quorum-quenching strategy that directly "acquires" bacterial genes/proteins through a defined platform. We artificially expressed a typical AHL synthase gene pcoI from the biocontrol Pseudomonas fluorescens 2P24 in the antifungal bacterium Lysobacter enzymogenes OH11 lacking AHL production. This step led to the discovery of multiple PcoI interacting protein candidates from L. enzymogenes. The individual expression of these candidate genes in 2P24 led to the identification of Le0959, which encodes leucyl aminopeptidase, an effective protein that inhibits AHL synthesis in 2P24. Therefore, we define Le0959 as LqqP (Lysobacterquorum-quenching protein). The expression of pcoI in E. coli could produce AHL, and the introduction of lqqP into E. coli expressing pcoI could prevent the production of AHL. LqqP directly binds to PcoI, and this protein-protein binding reduced the abundance of free PcoI (capable of AHL synthesis) in vivo, thereby blocking PcoI-dependent AHL production. Overall, this study highlights the discovery of LqqP in quenching AHL quorum sensing by binding to AHL synthase via developing a previously-uncharacterized screening technique for bacterial quorum quenching.

13.
Artículo en Inglés | MEDLINE | ID: mdl-33198147

RESUMEN

BACKGROUND: There is little understanding on how brief relaxation practice and viewing greenery images would affect brain responses during cognitive tasks. In the present study, we examined the variation in brain activation of the prefrontal cortex during arithmetic tasks before and after viewing greenery images, brief relaxation practice, and control task using functional near-infrared spectroscopy (fNIRS). METHOD: This randomized controlled study examined the activation patterns of the prefrontal cortex (PFC) in three groups of research participants who were exposed to viewing greenery images (n = 10), brief relaxation practice (n = 10), and control task (n = 11). The activation pattern of the PFC was measured pre- and post-intervention using a portable fNIRS device and reported as mean total oxygenated hemoglobin (HbO µm). Primary outcome of the study is the difference in HbO µm between post- and pre-intervention readings during a cognitive task that required the research participants to perform arithmetic calculation. RESULTS: In terms of intervention-related differences, there was significant difference in average HbO µm when performing arithmetic tasks before and after brief relaxation practice (p < 0.05). There were significant increases in average HbO µm in the right frontopolar cortex (p = 0.029), the left frontopolar cortex (p = 0.01), and the left orbitofrontal cortex (p = 0.033) during arithmetic tasks after brief relaxation practice. In contrast, there were no significant differences in average HbO µm when performing arithmetic tasks before and after viewing greenery images (p > 0.05) and the control task (p > 0.05). CONCLUSION: Our preliminary findings show that brief relaxation practice but not viewing greenery images led to significant frontal lobe activation during arithmetic tasks. The present study demonstrated, for the first time, that there was an increase in activation in neuroanatomical areas including the combined effort of allocation of attentional resources, exploration, and memory performance after the brief relaxation practice. Our findings suggest the possibility that the right frontopolar cortex, the left frontopolar cortex, and the left orbitofrontal cortex may be specifically associated with the benefits of brief relaxation on the brain.


Asunto(s)
Corteza Prefrontal , Terapia por Relajación , Espectroscopía Infrarroja Corta , Adulto , Femenino , Lóbulo Frontal/fisiología , Humanos , Masculino , Oxihemoglobinas/análisis , Corteza Prefrontal/fisiología , Terapia por Relajación/normas , Adulto Joven
14.
PLoS One ; 12(1): e0169598, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28072879

RESUMEN

Eucalyptus leaf blight caused by Calonectria spp. is a serious disease in Eucalyptus seedling and plantations. However, the molecular mechanisms of the infection process and pathogenesis of Calonectria to Eucalyptus is not well-studied. In this study, we analyzed the transcriptomes of C. pseudoreteaudii at three stages of Eucalyptus leaf infection, and in mycelium grown in potato dextrose broth using Illumina RNA-Seq technology. We identified 161 differentially expressed genes between C. pseudoreteaudii from leaf and mycelium grown in potato dextrose broth. GO and KEGG enrichment analyses of these genes suggested that they were mainly involved in oxidoreductase activity, hydrolase activity, and transmembrane transporter activity. Most of the differentially expressed genes at the early infection stage were upregulated. These upregulated genes were mainly involved in cell wall hydrolysis and toxin synthesis, suggesting a role for toxin and cell wall hydrolases in the establishment of Calonectria leaf blight. Genes related to detoxification of phytoalexins were continually upregulated during infection. The candidate effectors and putative pathogenicity determinants identified in this study will help in the functional analysis of C. pseudoreteaudii virulence and pathogenicity.


Asunto(s)
Ascomicetos/genética , Eucalyptus/microbiología , Perfilación de la Expresión Génica , Enfermedades de las Plantas/microbiología , Transcriptoma , Ascomicetos/ultraestructura , Biología Computacional/métodos , Regulación Fúngica de la Expresión Génica , Ontología de Genes , Anotación de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA