Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 35: 501-521, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31590586

RESUMEN

The dual leucine zipper-bearing kinase (DLK) and leucine zipper-bearing kinase (LZK) are evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in the multicellular response to injury and in disease. Of particular note is the potential link of these kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological contexts under which these kinases are activated, as well as the signal transduction mechanisms that mediate specific functional outcomes. In this review we first provide a historical overview of the biochemical and functional dissection of these kinases. We then discuss recent findings on regulating their activity to enhance cellular protection following injury and in disease, focusing on but not limited to the nervous system.


Asunto(s)
Leucina Zippers/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Neuronas/metabolismo , Estrés Fisiológico/genética , Animales , Axones/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/virología , Neuroglía/metabolismo , Neuronas/virología , Regeneración/genética , Regeneración/fisiología , Células Madre/metabolismo , Estrés Fisiológico/fisiología , Heridas y Lesiones/genética , Heridas y Lesiones/metabolismo
2.
Cell ; 164(5): 842-4, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919423

RESUMEN

Axon degeneration in response to trophic deprivation was thought to be locally restricted to the axon. However, increasing evidence points to a requirement for the cell body in the degenerative program. Now, Simon et al. identify the pro-apoptotic protein Puma as a key factor in this cell body-derived signal.


Asunto(s)
Axones/patología , Neuronas/patología , Transducción de Señal , Animales
3.
Proc Natl Acad Sci U S A ; 120(39): e2302801120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722038

RESUMEN

Primary cilia are specialized organelles supporting the development and function of cells and organisms. Intraflagellar transport (IFT) is essential for cilia formation, maintenance, and function. In C. elegans ciliated sensory neurons, IFT interacts with signaling molecules to generate distinct morphological and function features and also to maintain the integrity of cilia. Here, we report an IFT-dependent feedback control on the conserved MAPKKK DLK-1 in the ciliated sensory neurons. DLK proteins are widely known to act in synapse formation, axon regeneration, and degeneration, but their roles in other neuronal compartments are understudied. By forward genetic screening for altered expression of the endogenously tagged DLK-1 we identified multiple ift mutants showing increased DLK-1 accumulation in the defective sensory endings. We show that in response to acute IFT disruption, DLK-1 accumulates rapidly and reversibly. The expression levels of the transcription factor CEBP-1, known to act downstream of DLK-1 in the development and maintenance of synapses and axons, are also increased in the ciliated sensory neurons of ift mutants. Interestingly, the regulation of CEBP-1 expression shows sensory neuron-type dependency on DLK-1. Moreover, in the sensory neuron AWC, which has elaborate cilia morphology, up-regulated CEBP-1 represses DLK-1 at the transcription level, thereby dampening DLK-1 accumulation. Last, the IFT-dependent regulatory loop of DLK-1 and CEBP-1 offers neuroprotection in a cilia degeneration model. These findings uncover a surveillance mechanism in which tight control on the DLK-1 signaling protects cilia integrity in a context-specific manner.


Asunto(s)
Proteínas de Caenorhabditis elegans , Cilios , Animales , Cilios/genética , Retroalimentación , Axones , Caenorhabditis elegans/genética , Regeneración Nerviosa , Células Receptoras Sensoriales , Quinasas Quinasa Quinasa PAM , Proteínas de Caenorhabditis elegans/genética
4.
Cell ; 138(5): 1005-18, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19737525

RESUMEN

Growth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual-Leucine zipper Kinase MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology but also axon regeneration by influencing mRNA stability. DLK-1 kinase signals via a MAPKAP kinase, MAK-2, to stabilize the mRNA encoding CEBP-1, a bZip protein related to CCAAT/enhancer-binding proteins, via its 3'UTR. Inappropriate upregulation of cebp-1 in adult neurons disrupts synapses and axon morphology. CEBP-1 and the DLK-1 pathway are essential for axon regeneration after laser axotomy in adult neurons, and axotomy induces translation of CEBP-1 in axons. Our findings identify the DLK-1 pathway as a regulator of mRNA stability in synapse formation and maintenance and also in adult axon regeneration.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Estabilidad del ARN , Sinapsis , Animales , Axones/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Caenorhabditis elegans/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Cereb Cortex ; 33(7): 3866-3881, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35989311

RESUMEN

Protein quality control (PQC) is essential for maintaining protein homeostasis and guarding the accuracy of neurodevelopment. Previously, we found that a conserved EBAX-type CRL regulates the protein quality of SAX-3/ROBO guidance receptors in Caenorhabditis elegans. Here, we report that ZSWIM8, the mammalian homolog of EBAX-1, is essential for developmental stability of mammalian brains. Conditional deletion of Zswim8 in the embryonic nervous system causes global cellular stress, partial perinatal lethality and defective migration of neural progenitor cells. CRISPR-mediated knockout of ZSWIM8 impairs spine formation and synaptogenesis in hippocampal neurons. Mechanistic studies reveal that ZSWIM8 controls protein quality of Disabled 1 (Dab1), a key signal molecule for brain development, thus protecting the signaling strength of Dab1. As a ubiquitin ligase enriched with intrinsically disordered regions (IDRs), ZSWIM8 specifically recognizes IDRs of Dab1 through a "disorder targets misorder" mechanism and eliminates misfolded Dab1 that cannot be properly phosphorylated. Adult survivors of ZSWIM8 CKO show permanent hippocampal abnormality and display severely impaired learning and memory behaviors. Altogether, our results demonstrate that ZSWIM8-mediated PQC is critical for the stability of mammalian brain development.


Asunto(s)
Proteína Reelina , Ubiquitina , Animales , Femenino , Embarazo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Ligasas , Mamíferos/metabolismo , Serina Endopeptidasas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo
6.
J Neurosci ; 42(18): 3716-3732, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35361703

RESUMEN

The limited ability for axonal repair after spinal cord injury underlies long-term functional impairment. Dual leucine-zipper kinase [DLK; MAP kinase kinase kinase 12; MAP3K12] is an evolutionarily conserved MAP3K implicated in neuronal injury signaling from Caenorhabditis elegans to mammals. However, whether DLK or its close homolog leucine zipper kinase (LZK; MAP3K13) regulates axonal repair in the mammalian spinal cord remains unknown. Here, we assess the role of endogenous DLK and LZK in the regeneration and compensatory sprouting of corticospinal tract (CST) axons in mice of both sexes with genetic analyses in a regeneration competent background provided by PTEN deletion. We found that inducible neuronal deletion of both DLK and LZK, but not either kinase alone, abolishes PTEN deletion-induced regeneration and sprouting of CST axons, and reduces naturally-occurring axon sprouting after injury. Thus, DLK/LZK-mediated injury signaling operates not only in injured neurons to regulate regeneration, but also unexpectedly in uninjured neurons to regulate sprouting. Deleting DLK and LZK does not interfere with PTEN/mTOR signaling, indicating that injury signaling and regenerative competence are independently controlled. Together with our previous study implicating LZK in astrocytic reactivity and scar formation, these data illustrate the multicellular function of this pair of MAP3Ks in both neurons and glia in the injury response of the mammalian spinal cord.SIGNIFICANCE STATEMENT Functional recovery after spinal cord injury is limited because of a lack of axonal repair in the mammalian CNS. Dual leucine-zipper kinase (DLK) and leucine zipper kinase (LZK) are two closely related protein kinases that have emerged as regulators of neuronal responses to injury. However, their role in axonal repair in the mammalian spinal cord has not been described. Here, we show that DLK and LZK together play critical roles in axonal repair in the mammalian spinal cord, validating them as potential targets to promote repair and recovery after spinal cord injury. In addition to regulating axonal regeneration from injured neurons, both kinases also regulate compensatory axonal growth from uninjured neurons, indicating a more pervasive role in CNS repair than originally anticipated.


Asunto(s)
Leucina Zippers , Quinasas Quinasa Quinasa PAM/metabolismo , Traumatismos de la Médula Espinal , Animales , Axones/fisiología , Femenino , Leucina/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Masculino , Mamíferos , Ratones , Regeneración Nerviosa/fisiología , Tractos Piramidales/fisiología
7.
Genes Dev ; 29(22): 2377-90, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26588990

RESUMEN

Alternative polyadenylation (APA) is widespread in neuronal development and activity-mediated neural plasticity. However, the underlying molecular mechanisms are largely unknown. We used systematic genetic studies and genome-wide surveys of the transcriptional landscape to identify a context-dependent regulatory pathway controlling APA in the Caenorhabditis elegans nervous system. Loss of function in ssup-72, a Ser5 phosphatase for the RNA polymerase II (Pol II) C-terminal domain (CTD), dampens transcription termination at a strong intronic polyadenylation site (PAS) in unc-44/ankyrin yet promotes termination at the weak intronic PAS of the MAP kinase dlk-1. A nuclear protein, SYDN-1, which regulates neuronal development, antagonizes the function of SSUP-72 and several nuclear polyadenylation factors. This regulatory pathway allows the production of a neuron-specific isoform of unc-44 and an inhibitory isoform of dlk-1. Dysregulation of the unc-44 and dlk-1 mRNA isoforms in sydn-1 mutants impairs neuronal development. Deleting the intronic PAS of unc-44 results in increased pre-mRNA processing of neuronal ankyrin and suppresses sydn-1 mutants. These results reveal a mechanism by which regulation of CTD phosphorylation controls coding region APA in the nervous system.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/crecimiento & desarrollo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Ancirinas/genética , Ancirinas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Mutación , Neuronas/enzimología , Fosfoproteínas Fosfatasas/genética , Poliadenilación , Unión Proteica
8.
J Neurochem ; 158(6): 1274-1291, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32869293

RESUMEN

Acetylcholine is an abundant neurotransmitter in all animals. Effects of acetylcholine are excitatory, inhibitory, or modulatory depending on the receptor and cell type. Research using the nematode C. elegans has made ground-breaking contributions to the mechanistic understanding of cholinergic transmission. Powerful genetic screens for behavioral mutants or for responses to pharmacological reagents identified the core cellular machinery for synaptic transmission. Pharmacological reagents that perturb acetylcholine-mediated processes led to the discovery and also uncovered the composition and regulators of acetylcholine-activated channels and receptors. From a combination of electrophysiological and molecular cellular studies, we have gained a profound understanding of cholinergic signaling at the levels of synapses, neural circuits, and animal behaviors. This review will begin with a historical overview, then cover in-depth current knowledge on acetylcholine-activated ionotropic receptors, mechanisms regulating their functional expression and their functions in regulating locomotion.


Asunto(s)
Acetilcolina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Activación del Canal Iónico/fisiología , Locomoción/fisiología , Receptores Colinérgicos/metabolismo , Transmisión Sináptica/fisiología , Acetilcolina/genética , Acetilcolina/farmacología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Colinérgicos/metabolismo , Colinérgicos/farmacología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Receptores Colinérgicos/genética , Transmisión Sináptica/efectos de los fármacos
9.
Proc Natl Acad Sci U S A ; 115(12): 3114-3119, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29511101

RESUMEN

Neural circuits utilize a coordinated cellular machinery to form and eliminate synaptic connections, with the neuronal cytoskeleton playing a prominent role. During larval development of Caenorhabditis elegans, synapses of motor neurons are stereotypically rewired through a process facilitated by dynamic microtubules (MTs). Through a genetic suppressor screen on mutant animals that fail to rewire synapses, and in combination with live imaging and ultrastructural studies, we find that intermediate filaments (IFs) stabilize MTs to prevent synapse rewiring. Genetic ablation of IFs or pharmacological disruption of IF networks restores MT growth and rescues synapse rewiring defects in the mutant animals, indicating that IF accumulation directly alters MT stability. Our work sheds light on the impact of IFs on MT dynamics and axonal transport, which is relevant to the mechanistic understanding of several human motor neuron diseases characterized by IF accumulation in axonal swellings.


Asunto(s)
Caenorhabditis elegans/fisiología , Proteínas de Filamentos Intermediarios/metabolismo , Microtúbulos/fisiología , Neuronas Motoras/fisiología , Animales , Transporte Axonal , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Filamentos Intermediarios/genética , Neuronas Motoras/citología , Sinapsis/fisiología
10.
J Neurosci ; 39(44): 8617-8631, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31530643

RESUMEN

Presynaptic active zones (AZs) contain many molecules essential for neurotransmitter release and are assembled in a highly organized manner. A network of adaptor proteins known as cytomatrix at the AZ (CAZ) is important for shaping the structural characteristics of AZ. Rab3-interacting molecule (RIM)-binding protein (RBP) family are binding partners of the CAZ protein RIM and also bind the voltage-gated calcium channels (VGCCs) in mice and flies. Here, we investigated the physiological roles of RIMB-1, the homolog of RBPs in the nematode Caenorhabditis elegans RIMB-1 is expressed broadly in neurons and predominantly localized at presynaptic sites. Loss-of-function animals of rimb-1 displayed slight defects in motility and response to pharmacological inhibition of synaptic transmission, suggesting a modest involvement of rimb-1 in synapse function. We analyzed genetic interactions of rimb-1 by testing candidate genes and by an unbiased forward genetic screen for rimb-1 enhancer. Both analyses identified the RIM homolog UNC-10 that acts together with RIMB-1 to regulate presynaptic localization of the P/Q-type VGCC UNC-2/Cav2. We also find that the precise localization of RIMB-1 to presynaptic sites requires presynaptic UNC-2/Cav2. RIMB-1 has multiple FN3 and SH3 domains. Our transgenic rescue analysis with RIMB-1 deletion constructs revealed a functional requirement of a C-terminal SH3 in regulating UNC-2/Cav2 localization. Together, these findings suggest a redundant role of RIMB-1/RBP and UNC-10/RIM to regulate the abundance of UNC-2/Cav2 at the presynaptic AZ in C. elegans, depending on the bidirectional interplay between CAZ adaptor and channel proteins.SIGNIFICANCE STATEMENT Presynaptic active zones (AZs) are highly organized structures for synaptic transmission with characteristic networks of adaptor proteins called cytomatrix at the AZ (CAZ). In this study, we characterized a CAZ protein RIMB-1, named for RIM-binding protein (RBP), in the nematode Caenorhabditis elegans Through systematic analyses of genetic interactions and an unbiased genetic enhancer screen of rimb-1, we revealed a redundant role of two CAZ proteins RIMB-1/RBP and UNC-10/RIM in regulating presynaptic localization of UNC-2/Cav2, a voltage-gated calcium channel (VGCC) critical for proper neurotransmitter release. Additionally, the precise localization of RIMB-1/RBP requires presynaptic UNC-2/Cav2. These findings provide new mechanistic insight about how the interplay among multiple CAZ adaptor proteins and VGCC contributes to the organization of presynaptic AZ.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Canales de Calcio Tipo P/metabolismo , Canales de Calcio Tipo Q/metabolismo , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans
11.
Development ; 144(4): 698-707, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087624

RESUMEN

Differential mRNA polyadenylation plays an important role in shaping the neuronal transcriptome. In C. elegans, several ankyrin isoforms are produced from the unc-44 locus through alternative polyadenylation. Here, we identify a key role for an intronic polyadenylation site (PAS) in temporal- and tissue-specific regulation of UNC-44/ankyrin isoforms. Removing an intronic PAS results in ectopic expression of the neuronal ankyrin isoform in non-neural tissues. This mis-expression underlies epidermal developmental defects in mutants of the conserved tumor suppressor death-associated protein kinase dapk-1 We have previously reported that the use of this intronic PAS depends on the nuclear polyadenylation factor SYDN-1, which inhibits the RNA polymerase II CTD phosphatase SSUP-72. Consistent with this, loss of sydn-1 blocks ectopic expression of neuronal ankyrin and suppresses epidermal morphology defects of dapk-1 These effects of sydn-1 are mediated by ssup-72 autonomously in the epidermis. We also show that a peptidyl-prolyl isomerase PINN-1 antagonizes SYDN-1 in the spatiotemporal control of neuronal ankyrin isoform. Moreover, the nuclear localization of PINN-1 is altered in dapk-1 mutants. Our data reveal that tissue and stage-specific expression of ankyrin isoforms relies on differential activity of positive and negative regulators of alternative polyadenylation.


Asunto(s)
Ancirinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Epidermis/embriología , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Animales , Ancirinas/genética , Núcleo Celular/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Intrones , Mutación , Fenotipo , Poliadenilación , Isoformas de Proteínas , ARN Mensajero/metabolismo , Distribución Tisular
12.
J Neurogenet ; 34(3-4): 298-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32366143

RESUMEN

Synapses are dynamic connections that underlie essential functions of the nervous system. The addition, removal, and maintenance of synapses govern the flow of information in neural circuits throughout the lifetime of an animal. While extensive studies have elucidated many intrinsic mechanisms that neurons employ to modulate their connections, increasing evidence supports the roles of non-neuronal cells, such as glia, in synapse maintenance and circuit function. We previously showed that C. elegans epidermis regulates synapses through ZIG-10, a cell-adhesion protein of the immunoglobulin domain superfamily. Here we identified a member of the Pals1/MPP5 family, MAGU-2, that functions in the epidermis to modulate phagocytosis and the number of synapses by regulating ZIG-10 localization. Furthermore, we used light and electron microscopy to show that this epidermal mechanism removes neuronal membranes from the neuromuscular junction, dependent on the conserved phagocytic receptor CED-1. Together, our study shows that C. elegans epidermis constrains synaptic connectivity, in a manner similar to astrocytes and microglia in mammals, allowing optimized output of neural circuits.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Epidermis/fisiología , Proteínas de la Membrana/fisiología , Fagocitosis/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Neuronas Colinérgicas/fisiología , Levamisol/farmacología , Proteínas de la Membrana/genética , Neuronas Motoras/fisiología , Plasticidad Neuronal/fisiología , Filogenia , Isoformas de Proteínas/fisiología , ARN de Helminto/genética , ARN Mensajero/genética , Transgenes
13.
PLoS Genet ; 13(6): e1006844, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28636662

RESUMEN

Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas Serina-Treonina Quinasas/genética , Sinapsis/genética , Vesículas Sinápticas/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Dineínas/genética , Neuronas GABAérgicas/metabolismo , Cinesinas/genética , Larva/genética , Larva/crecimiento & desarrollo , Microtúbulos/genética , Microtúbulos/metabolismo , Plasticidad Neuronal/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/genética , Transducción de Señal , Sinapsis/fisiología , Vesículas Sinápticas/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(3): 763-8, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26719418

RESUMEN

Dual leucine-zipper kinase (DLK) is critical for axon-to-soma retrograde signaling following nerve injury. However, it is unknown how DLK, a predicted soluble kinase, conveys long-distance signals and why homologous kinases cannot compensate for loss of DLK. Here, we report that DLK, but not homologous kinases, is palmitoylated at a conserved site adjacent to its kinase domain. Using short-hairpin RNA knockdown/rescue, we find that palmitoylation is critical for DLK-dependent retrograde signaling in sensory axons. This functional importance is because of three novel cellular and molecular roles of palmitoylation, which targets DLK to trafficking vesicles, is required to assemble DLK signaling complexes and, unexpectedly, is essential for DLK's kinase activity. By simultaneously controlling DLK localization, interactions, and activity, palmitoylation ensures that only vesicle-bound DLK is active in neurons. These findings explain how DLK specifically mediates nerve injury responses and reveal a novel cellular mechanism that ensures the specificity of neuronal kinase signaling.


Asunto(s)
Axones/metabolismo , Axones/patología , Proteínas de Caenorhabditis elegans/metabolismo , Lipoilación , Quinasas Quinasa Quinasa PAM/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Secuencia Conservada , Evolución Molecular , Colorantes Fluorescentes/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Quinasas Quinasa Quinasa PAM/química , Microfluídica , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Fosforilación , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Ratas , Células Receptoras Sensoriales/metabolismo , Transfección , Vesículas Transportadoras/metabolismo
15.
Dev Biol ; 429(1): 240-248, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28673818

RESUMEN

The 3' untranslated regions (3' UTRs) of mRNAs mediate post-transcriptional regulation of genes in many biological processes. Cis elements in 3' UTRs can interact with RNA-binding factors in sequence-specific or structure-dependent manners, enabling regulation of mRNA stability, translation, and localization. Caenorhabditis elegans CEBP-1 is a conserved transcription factor of the C/EBP family, and functions in diverse contexts, from neuronal development and axon regeneration to organismal growth. Previous studies revealed that the levels of cebp-1 mRNA in neurons depend on its 3' UTR and are also negatively regulated by the E3 ubiquitin ligase RPM-1. Here, by systematically dissecting cebp-1's 3' UTR, we test the roles of specific cis elements in cebp-1 expression and function in neurons. We present evidence for a putative stem-loop in the cebp-1 3' UTR that contributes to basal expression levels of mRNA and to negative regulation by rpm-1. Mutant animals lacking the endogenous cebp-1 3' UTR showed a noticeable increased expression of cebp-1 mRNA and enhanced the neuronal developmental phenotypes of rpm-1 mutants. Our data reveal multiple cis elements within cebp-1's 3' UTR that help to optimize CEBP-1 expression levels in neuronal development.


Asunto(s)
Regiones no Traducidas 3'/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Axones/metabolismo , Secuencia de Bases , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Conformación de Ácido Nucleico , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regeneración , Eliminación de Secuencia/genética , Transgenes
16.
PLoS Genet ; 11(4): e1005185, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25876065

RESUMEN

During development, axons must integrate directional information encoded by multiple guidance cues and their receptors. Axon guidance receptors, such as UNC-40 (DCC) and SAX-3 (Robo), can function individually or combinatorially with other guidance receptors to regulate downstream effectors. However, little is known about the molecular mechanisms that mediate combinatorial guidance receptor signaling. Here, we show that UNC-40, SAX-3 and the SYD-1 RhoGAP-like protein function interdependently to regulate the MIG-2 (Rac) GTPase in the HSN axon of C. elegans. We find that SYD-1 mediates an UNC-6 (netrin) independent UNC-40 activity to promote ventral axon guidance. Genetic analysis suggests that SYD-1 function in axon guidance requires both UNC-40 and SAX-3 activity. Moreover, the cytoplasmic domains of UNC-40 and SAX-3 bind to SYD-1 and SYD-1 binds to and negatively regulates the MIG-2 (Rac) GTPase. We also find that the function of SYD-1 in axon guidance is mediated by its phylogenetically conserved C isoform, indicating that the role of SYD-1 in guidance is distinct from its previously described roles in synaptogenesis and axonal specification. Our observations reveal a molecular mechanism that can allow two guidance receptors to function interdependently to regulate a common downstream effector, providing a potential means for the integration of guidance signals.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Receptores Inmunológicos/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Axones/fisiología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/genética , Proteínas del Tejido Nervioso/genética , Unión Proteica , Receptores Inmunológicos/genética , Transducción de Señal , Proteínas de Unión al GTP rac/genética , Proteínas Roundabout
17.
J Biol Chem ; 291(15): 7796-804, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26907690

RESUMEN

Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Fisiológico , Animales , Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/inmunología , Inmunidad Innata , Quinasas Janus/inmunología , Quinasas Janus/metabolismo , Proteínas Quinasas Activadas por Mitógenos/inmunología
18.
BMC Biol ; 14(1): 104, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27927209

RESUMEN

BACKGROUND: Tribbles proteins are conserved pseudokinases that function to control kinase signalling and transcription in diverse biological processes. Abnormal function in human Tribbles has been implicated in a number of diseases including leukaemia, metabolic syndromes and cardiovascular diseases. Caenorhabditis elegans Tribbles NIPI-3 was previously shown to activate host defense upon infection by promoting the conserved PMK-1/p38 mitogen-activated protein kinase (MAPK) signalling pathway. Despite the prominent role of Tribbles proteins in many species, our knowledge of their mechanism of action is fragmented, and the in vivo functional relevance of their interactions with other proteins remains largely unknown. RESULTS: Here, by characterizing nipi-3 null mutants, we show that nipi-3 is essential for larval development and viability. Through analyses of genetic suppressors of nipi-3 null mutant lethality, we show that NIPI-3 negatively controls PMK-1/p38 signalling via transcriptional repression of the C/EBP transcription factor CEBP-1. We identified CEBP-1's transcriptional targets by ChIP-seq analyses and found them to be enriched in genes involved in development and stress responses. Unlike its cell-autonomous role in innate immunity, NIPI-3 is required in multiple tissues to control organismal development. CONCLUSIONS: Together, our data uncover an unprecedented crosstalk involving multiple tissues, in which NIPI-3 acts as a master regulator to inhibit CEBP-1 and the PMK-1/p38 MAPK pathway. In doing so, it keeps innate immunity in check and ensures proper organismal development.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas Quinasas/genética , Alelos , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Caenorhabditis elegans/genética , Supervivencia Celular , Mapeo Cromosómico , Clonación Molecular , Represión Epigenética , Regulación de la Expresión Génica , Inmunidad Innata , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
PLoS Genet ; 9(5): e1003472, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23658528

RESUMEN

Neuropeptides play crucial roles in modulating neuronal networks, including changing intrinsic properties of neurons and synaptic efficacy. We previously reported a Caenorhabditis elegans mutant, acr-2(gf), that displays spontaneous convulsions as the result of a gain-of-function mutation in a neuronal nicotinic acetylcholine receptor subunit. The ACR-2 channel is expressed in the cholinergic motor neurons, and acr-2(gf) causes cholinergic overexcitation accompanied by reduced GABAergic inhibition in the locomotor circuit. Here we show that neuropeptides play a homeostatic role that compensates for this excitation-inhibition imbalance in the locomotor circuit. Loss of function in genes required for neuropeptide processing or release of dense core vesicles specifically modulate the convulsion frequency of acr-2(gf). The proprotein convertase EGL-3 is required in the cholinergic motor neurons to restrain convulsions. Electrophysiological recordings of neuromuscular junctions show that loss of egl-3 in acr-2(gf) causes a further reduction of GABAergic inhibition. We identify two neuropeptide encoding genes, flp-1 and flp-18, that together counteract the excitation-inhibition imbalance in acr-2(gf) mutants. We further find that acr-2(gf) causes an increased expression of flp-18 in the ventral cord cholinergic motor neurons and that overexpression of flp-18 reduces the convulsion of acr-2(gf) mutants. The effects of these peptides are in part mediated by two G-protein coupled receptors, NPR-1 and NPR-5. Our data suggest that the chronic overexcitation of the cholinergic motor neurons imposed by acr-2(gf) leads to an increased production of FMRFamide neuropeptides, which act to decrease the activity level of the locomotor circuit, thereby homeostatically modulating the excitation and inhibition imbalance.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/fisiología , Neuronas Colinérgicas/metabolismo , Neuropéptidos/metabolismo , Receptores Nicotínicos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fenómenos Electrofisiológicos , Acoplamiento Excitación-Contracción/fisiología , FMRFamida/metabolismo , Homeostasis , Masculino , Actividad Motora/fisiología , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Neuropéptidos/genética , Proproteína Convertasa 2/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Convulsiones/metabolismo , Convulsiones/fisiopatología
20.
J Neurosci ; 34(3): 758-63, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431434

RESUMEN

The ability of axons to regrow after injury is determined by the complex interplay of intrinsic growth programs and external cues. In Caenorhabditis elegans mechanosensory neuron, axons exhibit robust regenerative regrowth following laser axotomy. By surveying conserved metabolic signaling pathways, we have identified the ribosomal S6 kinase RSKS-1 as a new cell-autonomous inhibitor of axon regeneration. RSKS-1 is not required for axonal development but inhibits axon regrowth after injury in multiple neuron types. Loss of function in rsks-1 results in more rapid growth cone formation after injury and accelerates subsequent axon extension. The enhanced regrowth of rsks-1 mutants is partly dependent on the DLK-1 MAPK cascade. An essential output of RSKS-1 in axon regrowth is the metabolic sensor AMP kinase, AAK-2. We further show that the antidiabetic drug phenformin, which activates AMP kinase, can promote axon regrowth. Our data reveal a new function for an S6 kinase acting through an AMP kinase in regenerative growth of injured axons.


Asunto(s)
Adenilato Quinasa/fisiología , Axones/enzimología , Proteínas de Caenorhabditis elegans/fisiología , Regeneración Nerviosa/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/fisiología , Proteínas Quinasas Activadas por AMP , Animales , Caenorhabditis elegans , Transgenes/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA