Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 8(8)2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30060440

RESUMEN

Graphene oxide (GO) has excellent physicochemical properties and is used in multiple areas. However, the potential toxicity and environmental problems associated with GO increase its risk to the ecological system. In this study, cement was employed as a coagulant to eliminate GO from aqueous solutions. The effects of the cement dosage, the contact time, and the concentration and volume of the aqueous GO solution on the GO coagulation capacity were investigated in detail. The results showed that the dosage of cement had a significant effect on the coagulation process, and coagulation equilibrium was achieved in less than 1 h. Compared to coagulants used to remove GO from water in other reports, cement exhibited an ultrahigh coagulation capacity of approximately 5981.2 mg/g with 0.4 mg/mL GO solution. The kinetic analysis showed that the GO removal behavior could be described by a pseudo second-order model. The in-depth mechanism of GO coagulation using cement included Ca2+-induced coagulation of GO and adsorption by the hydrated product of cement paste. The present study revealed that cement could be a very cheap and promising material for the efficient elimination of GO from aqueous solutions.

2.
Materials (Basel) ; 11(9)2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30189662

RESUMEN

Three dimensional (3D) ZnO/ZnAl2O4 nanocomposites (ZnnAl-MMO) were synthesized by a simple urea-assisted hydrothermal process and subsequent high-temperature calcination. The as-prepared samples and their precursors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and Photoluminescence spectra (PL). It was observed that the morphology of ZnnAl-MMO nanocomposites could be tuned from cubic aggregates, hierarchically flower-like spheres to porous microspheres by simply changing the molar ratio of metal cations of the starting reaction mixtures. The photocatalytic performance of ZnO/ZnAl2O4 nanocomposites in the photoreduction of aqueous Cr(VI) indicated that the as-prepared 3D hierarchical sphere-like ZnnAl-MMO nanocomposite showed excellent photocatalytic activity of Cr(VI) reduction under UV light irradiation. The results indicated that the maximum removal percentage of aqueous Cr(VI) was 98% within four hours at 10 mg/L initial concentration of Cr(VI), owing to the effective charge separation and diversion of photogenerated carriers across the heterojunction interface of the composite. Our study put forward a facile method to fabricate hierarchical ZnO/ZnAl2O4 composites with potential applications for wastewater treatment.

3.
Nanomaterials (Basel) ; 8(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149536

RESUMEN

The potential extensive application of graphene oxide (GO) in various fields results in the possibility of its release into the natural environment with negative impacts on humans and the ecosystem. The UV-induced removal behavior of aqueous GO was evaluated in this study, and the effect of various parameters (including initial GO concentration, initial solution pH and co-existing ions) on removal rate of GO were investigated in detail. The results showed that UV-light induced a maximum removal rate of GO of 99.1% after 32 h irradiation without any additives, and that the photo-induced removal process in all cases fitted well with pseudo-first-order kinetics. Under optimal conditions, GO was completely removed, with initial GO concentrations of 10 mg/L while adjusting solution pH to 3 or adding Ca2+-containing salt. The GO and photoreduced graphene oxide (prGO) were characterized using High-resolution Transmission Microscopy (HRTEM), X-ray Photoelectron Spectroscopy (XPS), and Fourier-transform Infrared Spectroscopy (FT-IR). The radical species trapping experiments and Electron Spin Resonance (ESR) tests indicated that self-reduction of GO upon UV-light exposure could be achieved via photogenerated electrons from a GO semiconductor. Further mechanism study showed that the high efficiency of UV-induced GO removal came from UV-induced photoreduction, and pH-induced or cation-induced coagulation. This study provided a green and effective method to remove GO from aqueous solutions.

4.
Nanomaterials (Basel) ; 6(9)2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28335301

RESUMEN

Graphitic-C3N4 nanosheets (CN)/ZnO photocatalysts (CN/ZnO) with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C3N4 nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL). The results showed that hexagonal wurzite-phase ZnO nanoparticles were randomly distributed onto the CN nanosheets with a well-bonded interface between the two components in the CN/ZnO composites. The performance of the photocatalytic Cr(VI) reduction indicated that CN/ZnO exhibited better photocatalytic activity than pure ZnO under visible-light irradiation and the photocatalyst composite with a lower loading of CN sheets eventually displayed higher activity. The enhanced performance of CN/ZnO photocatalysts could be ascribed to the increased absorption of the visible light and the effective transfer and separation of the photogenerated charge carriers.

5.
J Colloid Interface Sci ; 468: 211-219, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26851454

RESUMEN

3D porous framework composed of exfoliated ultrathin nanosheets is a hot topic in the field of energy storage and conversion. A facile method to prepare 3D mesoporous C3N4 with few-layered nanosheets interconnected in large quantity via H2SO4 intercalation and subsequent thermal treatment was described herein. The obtained thermally-exfoliated C3N4 (TE-C3N4) was thoroughly characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), UV-Vis diffuse reflectance spectroscopy (DRS) and Brunauer-Emmett-Teller (BET) measurements. The detailed analysis indicated that TE-C3N4 possessed enlarged inter-layer space, enhanced UV-light adsorption and high specific surface area with 3D interconnected structure composed of ultrathin 2D nanosheets. Compared to bulk C3N4, TE-C3N4 showed an enhanced photocatalytic activity for photodegradation of Rhodamine B under UV-light irradiation and exhibited no significant loss of photocatalytic activity after 11 recycled runs. The pseudo-first reaction rate constant for TE-C3N4 was about four times higher than that for pure bulk-C3N4. The better photocatalytic performance could be attributed to more active catalytic sites, prolonged photo-excited carrier lifetime and shorted pathway of the carriers to the reaction sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA