Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(3): 102923, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36681125

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.


Asunto(s)
Glicoesfingolípidos , Neoplasias Pancreáticas , Humanos , Cromatografía Liquida , Cromatografía en Capa Delgada , Gangliósidos/química , Glicoesfingolípidos/análisis , Glicoesfingolípidos/química , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/fisiopatología , Sulfoglicoesfingolípidos/química , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/fisiopatología , Espectrometría de Masas en Tándem , Biomarcadores de Tumor/metabolismo
2.
Anal Bioanal Chem ; 415(5): 935-951, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36598539

RESUMEN

Direct infusion of lipid extracts into the ion source of a mass spectrometer is a well-established method for lipid analysis. In most cases, nanofluidic devices are used for sample introduction. However, flow injection analysis (FIA) based on sample infusion from a chromatographic pump can offer a simple alternative to shotgun-based approaches. Here, we describe important modification of a method based on FIA and tandem mass spectrometry (MS/MS). We focus on minimizing contamination of the FIA/MS both to render the lipidomic platform more robust and to increase its capacity and applicability for long-sequence measurements required in clinical applications. Robust validation of the developed method confirms its suitability for lipid quantitation in human plasma analysis. Measurements of standard human plasma reference material (NIST SRM 1950) and a set of plasma samples collected from kidney cancer patients and from healthy volunteers yielded highly similar results between FIA-MS/MS and ultra-high-performance supercritical fluid chromatography (UHPSFC)/MS, thereby demonstrating that all modifications have practically no effect on the statistical output. Newly modified FIA-MS/MS allows for the quantitation of 141 lipid species in plasma (11 major lipid classes) within 5.7 min. Finally, we tested the method in a clinical laboratory of the General University Hospital in Prague. In the clinical setting, the method capacity reached 257 samples/day. We also show similar performance of the classification models trained based on the results obtained in clinical settings and the analytical laboratory at the University of Pardubice. Together, these findings demonstrate the high potential of the modified FIA-MS/MS for application in clinical laboratories to measure plasma and serum lipid profiles.


Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Lipidómica/métodos , Análisis de Inyección de Flujo , Plasma/química , Lípidos/análisis
3.
Bioinformatics ; 37(23): 4591-4592, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34498026

RESUMEN

SUMMARY: We present the LipidQuant 1.0 tool for automated data processing workflows in lipidomic quantitation based on lipid class separation coupled with high-resolution mass spectrometry. Lipid class separation workflows, such as hydrophilic interaction liquid chromatography or supercritical fluid chromatography, should be preferred in lipidomic quantitation due to the coionization of lipid class internal standards with analytes from the same class. The individual steps in the LipidQuant workflow are explained, including lipid identification, quantitation, isotopic correction and reporting results. We show the application of LipidQuant data processing to a small cohort of human serum samples. AVAILABILITY AND IMPLEMENTATION: The LipidQuant 1.0 is freely available at Zenodo https://doi.org/10.5281/zenodo.5151201 and https://holcapek.upce.cz/lipidquant.php. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Lipidómica , Lípidos , Humanos , Flujo de Trabajo , Espectrometría de Masas/métodos , Cromatografía Liquida , Lípidos/análisis
4.
Anal Bioanal Chem ; 414(1): 319-331, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34244835

RESUMEN

Reversed-phase ultrahigh-performance liquid chromatography-mass spectrometry (RP-UHPLC/MS) method was developed with the aim to unambiguously identify a large number of lipid species from multiple lipid classes in human plasma. The optimized RP-UHPLC/MS method employed the C18 column with sub-2-µm particles with the total run time of 25 min. The chromatographic resolution was investigated with 42 standards from 18 lipid classes. The UHPLC system was coupled to high-resolution quadrupole-time-of-flight (QTOF) mass analyzer using electrospray ionization (ESI) measuring full-scan and tandem mass spectra (MS/MS) in positive- and negative-ion modes with high mass accuracy. Our identification approach was based on m/z values measured with mass accuracy within 5 ppm tolerance in the full-scan mode, characteristic fragment ions in MS/MS, and regularity in chromatographic retention dependences for individual lipid species, which provides the highest level of confidence for reported identifications of lipid species including regioisomeric and other isobaric forms. The graphs of dependences of retention times on the carbon number or on the number of double bond(s) in fatty acyl chains were constructed to support the identification of lipid species in homologous lipid series. Our list of identified lipid species is also compared with previous publications investigating human blood samples by various MS-based approaches. In total, we have reported more than 500 lipid species representing 26 polar and nonpolar lipid classes detected in NIST Standard reference material 1950 human plasma.


Asunto(s)
Cromatografía Liquida/métodos , Lípidos/sangre , Lípidos/química , Espectrometría de Masas/métodos , Humanos
5.
Anal Chem ; 93(41): 13835-13843, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34623138

RESUMEN

The chemical derivatization of multiple lipid classes was developed using benzoyl chloride as a nonhazardous derivatization agent at ambient conditions. The derivatization procedure was optimized with standards for 4 nonpolar and 8 polar lipid classes and measured by reversed-phase ultrahigh-performance liquid chromatography-tandem mass spectrometry. The derivatization and nonderivatization approaches were compared on the basis of the calibration curves of 22 internal standards from 12 lipid classes. The new method decreased the limit of detection 9-fold for monoacylglycerols (0.9-1.0 nmol/mL), 6.5-fold for sphingoid base (0.2 nmol/mL), and 3-fold for diacylglycerols (0.9 nmol/mL). The sensitivity expressed by the ratio of calibration slopes was increased 2- to 10-fold for almost all investigated lipid classes and even more than 100-fold for monoacylglycerols. Moreover, the benzoylation reaction produces a more stable derivative of cholesterol in comparison to the easily in-source fragmented nonderivatized form and enabled the detection of fatty acids in a positive ion mode, which does not require polarity switching as for the nonderivatized form. The intralaboratory comparison with an additional operator without previous derivatization experiences shows the simplicity, robustness, and reproducibility. The stability of the derivatives was determined by periodical measurements during a one month period and five freeze/thaw cycles. The fully optimized derivatization method was applied to human plasma, which allows the detection of 169 lipid species from 11 lipid classes using the high confidence level of identification in reversed-phase (RP)-ultra high performance liquid chromatography (UHPLC)/mass spectrometry (MS). Generally, we detected more lipid species for monoacylglycerols, diacylglycerols, and sphingoid bases in comparison with previously reported papers without the derivatization.


Asunto(s)
Lípidos , Espectrometría de Masas en Tándem , Benzoatos , Cromatografía Líquida de Alta Presión , Humanos , Reproducibilidad de los Resultados
6.
Chemistry ; 27(52): 13149-13160, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34096106

RESUMEN

The titled 2,1-benzazaphosphole (1) (i. e. ArP, where Ar=2-(DippN=CH)C6 H4 , Dipp=2,6-iPr2 C6 H3 ) showed a spectacular reactivity behaving both as a reactive heterodiene in hetero-Diels-Alder (DA) reactions or as a hidden phosphinidene in the coordination toward selected transition metals (TMs). Thus, 1 reacts with electron-deficient alkynes RC≡CR (R=CO2 Me, C5 F4 N) giving 1-phospha-1,4-dihydro-iminonaphthalenes 2 and 3, that undergo hydrogen migration producing 1-phosphanaphthalenes 4 and 5. Compound 1 is also able to activate the C=C double bond in selected N-alkyl/aryl-maleimides RN(C(O)CH)2 (R=Me, tBu, Ph) resulting in the addition products 7-9 with bridged bicyclic [2.2.1] structures. The binding of the maleimides to 1 is semi-reversible upon heating. By contrast, when 1 was treated with selected TM complexes, it serves as a 4e donor bridging two TMs thus producing complexes [µ-ArP(AuCl)2 ] (10), [(µ-ArP)4 Ag4 ][X]4 (X=BF4 (11), OTf (12)) and [µ-ArP(Co2 (CO)6 )] (13). The structure and electron distribution of the starting material 1 as well as of other compounds were also studied from the theoretical point of view.

7.
Chemistry ; 27(52): 13096-13097, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34363422

RESUMEN

Invited for the cover of this issue are Zoltán Benko, Libor Dostál and co-workers at the University of Pardubice and the Budapest University of Technology and Economics. The image depicts signs for the two different pathways representing the two differing reaction types which were clearly observed for 2,1-benzazaphosphole. Read the full text of the article at 10.1002/chem.202101686.

8.
Anal Bioanal Chem ; 412(10): 2375-2388, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32078000

RESUMEN

Ultrahigh-performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) has a great potential for the high-throughput lipidomic quantitation of biological samples; therefore, the full optimization and method validation of UHPSFC/MS is compared here with ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC/MS) in hydrophilic interaction liquid chromatography (HILIC) mode as the second powerful technique for the lipid class separation. First, the performance of six common extraction protocols is investigated, where the Folch procedure yields the best results with regard to recovery rate, matrix effect, and precision. Then, the full optimization and analytical validation for eight lipid classes using UHPSFC/MS and HILIC-UHPLC/MS methods are performed for the same sample set and applied for the lipidomic characterization of pooled samples of human plasma, human serum, and NIST SRM 1950 human plasma. The choice of appropriate internal standards (IS) for individual lipid classes has a key importance for reliable quantitative workflows illustrated by the selectivity while validation and the calculation of the quantitation error using multiple internal standards per lipid class. Validation results confirm the applicability of both methods, but UHPSFC/MS provides some distinct advantages, such as the successful separation of both non-polar and polar lipid classes unlike to HILIC-UHPLC/MS, shorter total run times (8 vs. 10.5 min), and slightly higher robustness. Various types of correlations between methods (UHPSFC/MS and HILIC-UHPLC/MS), biological material (plasma and serum), IS (laboratory and commercially mixtures), and literature data on the standard reference material show the intra- and inter-laboratory comparison in the quantitation of lipid species from eight lipid classes, the concentration differences in serum and plasma as well as the applicability of non-commercially available internal standard mixtures for lipid quantitation.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cromatografía con Fluido Supercrítico/métodos , Lipidómica/métodos , Lípidos/química , Espectrometría de Masas/métodos , Humanos , Lípidos/sangre , Plasma/química , Suero/química
9.
Chemistry ; 25(56): 12884-12888, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31353625

RESUMEN

The reaction of N,C,N-chelated stibinidene ArSb (1) (Ar=C6 H3 -2,6-(CH=NtBu)2 ) with selected N-alkyl/aryl-maleimides RN(C(O)CH)2 (R=Me, tBu, Ph) gave the addition products with bridged bicyclic [2.2.1] structure containing an antimony atom at the bridgehead position, fused with a 6-membered benzene and a 5-membered N-alkyl/aryl-pyrrolidine ring. These compounds were completely characterized. More importantly, additional studies showed that these reactions are reversible in solution, thereby representing an unprecedented reversible activation of a C=C bond by an antimony(I) compound.

10.
Anal Bioanal Chem ; 411(6): 1239-1251, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30617406

RESUMEN

The ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC/MS) method was optimized and validated for the determination of oxylipins in human plasma using the targeted approach with selected reaction monitoring (SRM) in the negative-ion electrospray ionization (ESI) mode. Reversed phase UHPLC separation on an octadecylsilica column enabled the analysis of 63 oxylipins including numerous isomeric species within 12-min run time. The method was validated (calibration curve, linearity, limit of detection, limit of quantification, carry-over, precision, accuracy, recovery rate, and matrix effect) and applied to 40 human female plasma samples from breast cancer patients and age-matched healthy volunteers (control). Thirty-six oxylipins were detected in human plasma with concentrations above the limit of detection, and 21 of them were quantified with concentrations above the limit of quantitation. The concentrations determined in healthy controls are in a good agreement with previously reported data on human plasma. Quantitative data were statistically evaluated by multivariate data analysis (MDA) methods including principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA). S-plot and box plots showed that 13-HODE, 9-HODE, 13-HOTrE, 9-HOTrE, and 12-HHTrE were the most upregulated oxylipin species in plasma of breast cancer patients.


Asunto(s)
Neoplasias de la Mama/sangre , Cromatografía de Fase Inversa/métodos , Oxilipinas/sangre , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Líquida de Alta Presión/métodos , Femenino , Humanos , Límite de Detección , Análisis Multivariante , Análisis de Componente Principal , Reproducibilidad de los Resultados
11.
Anal Bioanal Chem ; 410(25): 6585-6594, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30054694

RESUMEN

Negative-ion hydrophilic liquid chromatography-electrospray ionization mass spectrometry (HILIC/ESI-MS) method has been optimized for the quantitative analysis of ganglioside (GM3) and other polar lipid classes, such as sulfohexosylceramides (SulfoHexCer), sulfodihexosylceramides (SulfoHex2Cer), phosphatidylglycerols (PG), phosphatidylinositols (PI), lysophosphatidylinositols (LPI), and phosphatidylserines (PS). The method is fully validated for the quantitation of the studied lipids in kidney normal and tumor tissues of renal cell carcinoma (RCC) patients based on the lipid class separation and the coelution of lipid class internal standard with the species from the same lipid class. The raw data are semi-automatically processed using our software LipidQuant and statistically evaluated using multivariate data analysis (MDA) methods, which allows the complete differentiation of both groups with 100% specificity and sensitivity. In total, 21 GM3, 28 SulfoHexCer, 26 SulfoHex2Cer, 10 PG, 19 PI, 4 LPI, and 7 PS are determined in the aqueous phase of lipidomic extracts from kidney tumor tissue samples and surrounding normal tissue samples of 20 RCC patients. S-plots allow the identification of most upregulated (PI 40:5, PI 40:4, GM3 34:1, and GM3 42:2) and most downregulated (PI 32:0, PI 34:0, PS 36:4, and LPI 16:0) lipids, which are primarily responsible for the differentiation of tumor and normal groups. Another confirmation of most dysregulated lipids is performed by the calculation of fold changes together with T and p values to highlight their statistical significance. The comparison of HILIC/ESI-MS data and matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) data confirms that lipid dysregulation patterns are similar for both methods. Graphical abstract ᅟ.


Asunto(s)
Carcinoma de Células Renales/química , Gangliósidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Estándares de Referencia
12.
Anal Chem ; 89(22): 12425-12432, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29058414

RESUMEN

The hydrophilic interaction liquid chromatography (HILIC) coupled to a negative-ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) method has been developed for the identification of a wide range of gangliosides in biological samples. Gangliosides consist of a backbone of sphingoid base and a polar oligosaccharide chain containing at least one sialic acid. Gangliosides are extracted by chloroform-methanol-water mixture, where an upper aqueous layer containing gangliosides and other polar lipid subclasses is further purified by C18 solid-phase extraction. The optimization of chromatographic conditions includes the column selection, mobile-phase composition, pH value, buffer type, and concentration with the goal to achieve the best chromatographic resolution and MS sensitivity. The identification of gangliosides and other polar lipids is based on accurate m/z values of [M-H]- ions and fragment ions as well measured by high-resolution MS. The detailed interpretation of MS/MS spectra enables the generalization of fragmentation pathways, which is then used for the differentiation of a, b, and c series of gangliosides. The structural assignment is further confirmed by agreement with the predicted retention behavior in HILIC mode on the basis of the correlation among the ganglioside retention, the number of saccharide units, and their sequence. The final HILIC/ESI-MS/MS method is applied for the analysis of porcine brain, human kidney, lungs, plasma, and erythrocytes resulting in unambiguous identification of 145 ganglioside species from 19 subclasses, which represents the highest number of reported gangliosides. Moreover, 71 sulfatides and 59 polar phospholipids (phosphatidylserines, phosphatidylinositols, lysophosphatidylinositols, and phosphatidylglycerols) are detected within a 15 min run.


Asunto(s)
Eritrocitos/química , Gangliósidos/análisis , Riñón/química , Pulmón/química , Animales , Encéfalo , Cromatografía Líquida de Alta Presión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masa por Ionización de Electrospray , Porcinos , Espectrometría de Masas en Tándem
14.
Inorg Chem ; 54(12): 6010-9, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26016827

RESUMEN

An unprecedented transfer of an aryl group from boron to Sb and Bi is observed in the reaction of heteroboroxines of general formula ArM[(OBR)2O] [where M = Sb, Bi; Ar = C6H3-2,6-(CH2NMe2)2; R = Ph, 4-CF3C6H4, 4-BrC6H4] with corresponding boronic acid RB(OH)2. Using this procedure, ion pairs [ArMR](+)[R4B5O6](-) were obtained [where M = Sb and R = Ph (4), 4-CF3C6H4 (5), 4-BrC6H4 (6); where M = Bi and R = Ph (7), 4-CF3C6H4 (8), 4-BrC6H4 (9)]. All compounds were characterized using elemental analysis, electrospray ionization mass spectrometry, and multinuclear NMR spectroscopy, and molecular structures of 4 and 7 were determined by single-crystal X-ray diffraction analysis. The central metal atoms in 4-9 were arylated by respective boronic acids, which represents, to the best of our knowledge, unprecedented reaction path in the chemistry of heavier group 15 elements. Investigation of the mechanism of this transformation indicated that Lewis pairs consisting of monomeric oxides ArMO and boroxine rings are probably key intermediates. In this regard, molecular structures of ArSbO[(4-CF3C6H4)3B3O3]·(4-CF3C6H4)B(OH)2 (10) and {ArSbO[(3,5-(CF3)2C6H3)3B3O3]} (13) were established by single-crystal X-ray diffraction analysis, and compound 13 was also fully characterized in solution by multinuclear NMR spectroscopy. The bonding in 13 was analyzed in detail by using density functional theory and natural bond order calculations and compared with known adduct ArSbOB(C6F5)3 (14) and hypothetical ArSbO monomer.

15.
Parasitology ; 142(5): 648-59, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25373326

RESUMEN

The sheep tapeworm Moniezia expansa is very common parasite, which affects ruminants such as sheep, goats as well as other species. The benzimidazole anthelmintics albendazole (ABZ), flubendazole (FLU) and mebendazole (MBZ) are often used to treat the infection. The drug-metabolizing enzymes of helminths may alter the potency of anthelmintic treatment. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (ABZ, MBZ and FLU) in M. expansa. Activities of biotransformation enzymes were determined in subcellular fractions. Metabolites of the anthelmintics were detected and identified using high performance liquid chromatography/ultra-violet/VIS/fluorescence or ultra-high performance liquid chromatography/mass spectrometry. Reduction of MBZ, FLU and oxidation of ABZ were proved as well as activities of various metabolizing enzymes. Despite the fact that the conjugation enzymes glutathione S-transferase, UDP-glucuronosyl transferase and UDP-glucosyl transferase were active in vitro, no conjugated metabolites of anthelmintics were identified either ex vivo or in vitro. The obtained results indicate that sheep tapeworm is able to deactivate the administered anthelmintics, and thus protects itself against their action.


Asunto(s)
Albendazol/farmacocinética , Antihelmínticos/farmacocinética , Cestodos/enzimología , Mebendazol/análogos & derivados , Mebendazol/farmacocinética , Albendazol/farmacología , Oxidorreductasas de Alcohol/metabolismo , Animales , Antihelmínticos/farmacología , Biotransformación , Catalasa/metabolismo , Cestodos/efectos de los fármacos , Cestodos/ultraestructura , Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Glutatión Transferasa/metabolismo , Intestino Delgado/parasitología , Isoenzimas/metabolismo , Mebendazol/farmacología , Oxigenasas de Función Mixta/metabolismo , Monieziasis/parasitología , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Ovinos , Enfermedades de las Ovejas/parasitología , Superóxido Dismutasa/metabolismo
16.
Anal Bioanal Chem ; 406(19): 4601-10, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24842405

RESUMEN

The combination of ultrahigh-resolution mass spectrometry imaging (UHRMSI) and ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) was used for the identification and the spatial localization of atorvastatin (AT) and its metabolites in rat tissues. Ultrahigh-resolution and high mass accuracy measurements on a matrix-assisted laser desorption/ionization (MALDI)-Orbitrap mass spectrometer allowed better detection of desired analytes in the background of matrix and endogenous compounds. Tandem mass spectra were also used to confirm the identification of detected metabolites in complex matrices. The optimization of sample preparation before imaging experiments included the tissue cryogenic sectioning (thickness 20 µm), the transfer to stainless steel or glass slide, and the selection of suitable matrix and its homogenous deposition on the tissue slice. Thirteen matrices typically used for small molecule analysis, e.g., 2,5-dihydroxybenzoic acid (DHB), 1,5-diaminonaphthalene (DAN), 9-aminoacridine (AA), etc., were investigated for the studied drug and its metabolite detection efficiency in both polarity modes. Particular matrices were scored based on the strength of extracted ion current (EIC), relative ratio of AT molecular adducts, and fragment ions. The matrix deposition on the tissue for the most suitable matrices was done by sublimation to obtain the small crystal size and to avoid local variations in the ionization efficiency. UHPLC/MS profiling of drug metabolites in adjacent tissue slices with the previously optimized extraction was performed in parallel to mass spectrometry imaging (MSI) measurements to obtain more detailed information on metabolites in addition to the spatial information from MSI. The quantitation of atorvastatin in rat liver, serum, and feces was also performed.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Heces/química , Ácidos Heptanoicos/metabolismo , Hígado/química , Pirroles/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Atorvastatina , Ácidos Heptanoicos/sangre , Masculino , Pirroles/sangre , Ratas , Ratas Wistar , Distribución Tisular/fisiología
17.
Anal Chim Acta ; 1288: 342144, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220279

RESUMEN

A new hydrophilic interaction liquid chromatography - mass spectrometry method is developed for low-abundant phospholipids and sphingolipids in human plasma and serum. The optimized method involves the Cogent Silica type C hydride column, the simple sample preparation by protein precipitation, and the removal of highly abundant lipid classes using the postcolumn valve directed to waste during two elution windows. The method allows a highly confident and sensitive identification of low-abundant lipid classes in human plasma (246 lipid species from 24 lipid subclasses) based on mass accuracy and retention dependencies in both polarity modes. The method is validated for quantitation using two internal standards (if available) for each lipid class and applied to human plasma and serum samples obtained from patients with pancreatic ductal adenocarcinoma (PDAC), healthy controls, and NIST SRM 1950. Multivariate data analysis followed by various statistical projection methods is used to determine the most dysregulated lipids. Significant downregulation is observed for lysophospholipids with fatty acyl composition 16:0, 18:0, 18:1, and 18:2. Distinct trends are observed for phosphatidylethanolamines (PE) in relation to the bonding type of fatty acyls, where most PE with acyl bonds are upregulated, while ether/plasmenyl PE are downregulated. For the sphingolipid category, sphingolipids with very long N-acyl chains are downregulated, while sphingolipids with shorter N-acyl chains were upregulated in PDAC. These changes are consistently observed for various classes of sphingolipids, ranging from ceramides to glycosphingolipids, indicating a possible metabolic disorder in ceramide biosynthesis caused by PDAC.


Asunto(s)
Neoplasias Pancreáticas , Esfingolípidos , Humanos , Esfingolípidos/análisis , Plasma/química , Suero , Ceramidas
18.
Anal Bioanal Chem ; 405(23): 7181-93, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23861182

RESUMEN

Ultrahigh-performance liquid chromatography coupled with high-mass-accuracy tandem mass spectrometry (UHPLC-MS-MS) has been used for elucidation of the structures of oxidation products of atorvastatin (AT), one of the most popular commercially available drugs. The purpose of the study was identification of AT metabolites in rat hepatocytes and comparison with electrochemically generated oxidation products. AT was incubated with rat hepatocytes for 24 h. Electrochemical oxidation of AT was performed by use of a three-electrode off-line system with a glassy carbon working electrode. Three supporting electrolytes (0.1 mol L(-1) H2SO4, 0.1 mol L(-1) HCl, and 0.1 mol L(-1) NaCl) were tested, and dependence on pH was also investigated. AT undergoes oxidation by a single irreversible process at approximately +1.0 V vs. Ag/AgCl electrode. The results obtained revealed a simple and relatively fast way of determining the type of oxidation and its position, on the basis of characteristic neutral losses (NLs) and fragment ions. Unfortunately, different products were obtained by electrochemical oxidation and biotransformation of AT. High-mass-accuracy measurement combined with different UHPLC-MS-MS scans, for example reconstructed ion-current chromatograms, constant neutral loss chromatograms, or exact mass filtering, enable rapid identification of drug-related compounds. ß-Oxidation, aromatic hydroxylation of the phenylaminocarbonyl group, sulfation, AT lactone and glycol formation were observed in rat biotransformation samples. In contrast, a variety of oxidation reactions on the conjugated skeleton of isopropyl substituent of AT were identified as products of electrolysis.


Asunto(s)
Glicoles/química , Hepatocitos/metabolismo , Ácidos Heptanoicos/química , Lactonas/química , Pirroles/química , Animales , Atorvastatina , Transporte Biológico , Biotransformación , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Electrólisis , Glicoles/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Ácidos Heptanoicos/metabolismo , Concentración de Iones de Hidrógeno , Hidroxilación , Lactonas/metabolismo , Masculino , Peso Molecular , Oxidación-Reducción , Pirroles/metabolismo , Ratas , Espectrometría de Masas en Tándem
19.
Anal Bioanal Chem ; 405(5): 1705-12, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23183590

RESUMEN

Monepantel (MOP) belongs to a new class of anthelmintic drugs known as aminoacetonitrile derivatives. It was approved for use in veterinary practice in Czech Republic in 2011. So far, biotransformation and transport of MOP in target animals have been studied insufficiently, although the study of metabolic pathways of anthelmintics is very important for the efficacy of safety of therapy and evaluation of the risk of drug-drug interactions. The aim of this study was to identify MOP metabolites and to suggest the metabolic pathways of MOP in sheep. For this purpose, primary culture of ovine hepatocytes was used as a model in vitro system. After incubation, medium samples and homogenates of hepatocytes were extracted separately using solid-phase extraction. Analysis was performed using a hybrid quadrupole-time-of-flight analyzer with respect to high mass accuracy measurements in full scan and tandem mass spectra for the confirmation of an elemental composition. The obtained results revealed S-oxidation to sulfoxide and sulfone and arene hydroxylation as MOP phase I biotransformations. From phase II metabolites, MOP glucuronides, sulfates, and acetylcysteine conjugates were found. Based on the obtained results, a scheme of the metabolic pathway of MOP in sheep has been proposed.


Asunto(s)
Aminoacetonitrilo/análogos & derivados , Antihelmínticos/metabolismo , Hepatocitos/metabolismo , Ovinos/metabolismo , Aminoacetonitrilo/metabolismo , Animales , Células Cultivadas , Cromatografía Líquida de Alta Presión , Redes y Vías Metabólicas , Extracción en Fase Sólida , Espectrometría de Masas en Tándem
20.
Parasitology ; 140(3): 361-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23089373

RESUMEN

Ivermectin (IVE), one of the most important anthelmintics, is often used in the treatment of haemonchosis in ruminants. The objective of our work was (1) to find and identify phase I and II metabolites of IVE formed by the Barber's pole worm (Haemonchus contortus), and (2) to compare IVE metabolites in helminths with IVE biotransformation in sheep (Ovis aries) as host species. Ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) was used for this purpose. During in vitro incubations, microsomes (from adult worms or from ovine liver) and a primary culture of ovine hepatocytes were incubated with IVE. In the ex vivo study, living H. contortus adults were incubated in the presence of 1 µM IVE for 24 h. The results showed that the H. contortus enzymatic system is not able to metabolize IVE. On the other hand, 7 different phase I as well as 9 phase II IVE metabolites were detected in ovine samples using UHPLC/MS/MS analyses. Most of these metabolites have not been described before. Haemonchus contortus is not able to deactivate IVE through biotransformation; therefore, biotransformation does not contribute to the development of IVE-resistance in the Barber's pole worm.


Asunto(s)
Antihelmínticos/metabolismo , Haemonchus/metabolismo , Hepatocitos/metabolismo , Ivermectina/metabolismo , Microsomas/metabolismo , Oveja Doméstica/metabolismo , Animales , Antihelmínticos/química , Antihelmínticos/uso terapéutico , Células Cultivadas , Cromatografía Liquida , Hemoncosis/tratamiento farmacológico , Hemoncosis/parasitología , Hemoncosis/veterinaria , Haemonchus/efectos de los fármacos , Haemonchus/crecimiento & desarrollo , Ivermectina/química , Ivermectina/uso terapéutico , Espectrometría de Masas , Ovinos/metabolismo , Enfermedades de las Ovejas/tratamiento farmacológico , Enfermedades de las Ovejas/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA