Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Yeast ; 41(7): 448-457, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38874213

RESUMEN

Smk1 is a MAPK homolog in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore wall assembly. During this program, haploid cells are surrounded by a layer of mannan and then a layer of glucan. These inner layers of the spore wall resemble the vegetative cell wall. Next, the outer layers consisting of chitin/chitosan and then dityrosine are assembled. The outer layers are spore-specific and provide protection against environmental stressors. Smk1 is required for the proper assembly of spore walls. However, the protective properties of the outer layers have limited our understanding of how Smk1 controls this morphogenetic program. Mutants lacking the chitin deacetylases, Cda1 and Cda2, form spores that lack the outer layers of the spore wall. In this study, cda1,2∆ cells were used to demonstrate that Smk1 promotes deposition of the glucan layer of the spore wall through the partially redundant glucan synthases Gsc2 and Fks3. Although Gsc2 is localized to sites of spore wall assembly in the wild type, it is mislocalized in the mother cell cytoplasm in the smk1∆ mutant. These findings suggest that Smk1 controls assembly of the spore wall by regulating the localization of Gsc2 during sporogenesis.


Asunto(s)
Pared Celular , Glucanos , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Esporas Fúngicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Glucanos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas de la Membrana
2.
Mol Cell ; 31(3): 371-82, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18691969

RESUMEN

Posttranslational modification with small ubiquitin-related modifier, SUMO, is a widespread mechanism for rapid and reversible changes in protein function. Considering the large number of known targets, the number of enzymes involved in modification seems surprisingly low: a single E1, a single E2, and a few distinct E3 ligases. Here we show that autosumoylation of the mammalian E2-conjugating enzyme Ubc9 at Lys14 regulates target discrimination. While not altering its activity toward HDAC4, E2-25K, PML, or TDG, sumoylation of Ubc9 impairs its activity on RanGAP1 and strongly activates sumoylation of the transcriptional regulator Sp100. Enhancement depends on a SUMO-interacting motif (SIM) in Sp100 that creates an additional interface with the SUMO conjugated to the E2, a mechanism distinct from Ubc9 approximately SUMO thioester recruitment. The crystal structure of sumoylated Ubc9 demonstrates how the newly created binding interface can provide a gain in affinity otherwise provided by E3 ligases.


Asunto(s)
Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Autoantígenos/metabolismo , Cristalografía por Rayos X , Ésteres/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Enzimas Ubiquitina-Conjugadoras/química
3.
Nat Cell Biol ; 4(12): E295-8, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12461537

RESUMEN

In recent years, there has been a marked expansion of recognized roles for ubiquitin (Ub) in processes other than proteasome-dependent proteolysis, as well as a proliferation of Ub-like proteins that also function through covalent attachment to other proteins. The full diversity of functions for these proteins was on display at the American Society for Cell Biology (ASCB) meeting on "Non-Traditional Functions of Ubiquitin and Ubiquitin-Like Proteins" held at Colorado College in Colorado Springs, Colorado (August 11-14th, 2002).


Asunto(s)
Ubiquitina/fisiología , Cromatina/fisiología , Reparación del ADN , Proteínas de la Membrana/fisiología , Transporte de Proteínas/fisiología , Transcripción Genética
4.
Cancer Res ; 67(2): 765-72, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17234788

RESUMEN

Development of drug resistance is a major challenge in cancer chemotherapy using doxorubicin. By screening the collection of Saccharomyces cerevisiae deletion strains to identify doxorubicin-resistant mutants, we have discovered that the small ubiquitin-related modifier (SUMO) pathway is a major determinant of doxorubicin cytotoxicity in yeast. Mutants lacking UBA2 (SUMO activating enzyme; E1), UBC9 (conjugating enzyme; E2), and ULP1 and ULP2 (desumoylation peptidases) are all doxorubicin resistant, as are mutants lacking MLP1, UIP3, and NUP60, which all interact with ULP1. Most informatively, mutants lacking the SUMO E3 ligase Siz1 are strongly doxorubicin resistant, whereas mutants of other SUMO ligases are either weakly resistant (siz2) or hypersensitive (mms21) to doxorubicin. These results suggest that doxorubicin cytotoxicity is regulated by Siz1-dependent sumoylation of specific proteins. Eliminating SUMO attachment to proliferating cell nuclear antigen or topoisomerase II does not affect doxorubicin cytotoxicity, whereas reducing SUMO attachment to the bud neck-associated septin proteins has a modest effect. Consistent with these results, doxorubicin resistance in the siz1Delta strain does not seem to involve an effect on DNA repair. Instead, siz1Delta cells accumulate lower intracellular levels of doxorubicin than wild-type (WT) cells, suggesting that they are defective in doxorubicin retention. Although siz1Delta cells are cross-resistant to daunorubicin, they are hypersensitive to cisplatin and show near WT sensitivity to other drugs, suggesting that the siz1Delta mutation does not cause a general multidrug resistance phenotype. Cumulatively, these results reveal that SUMO modification of proteins mediates the doxorubicin cytotoxicity in yeast, at least partially, by modification of septins and of proteins that control the intracellular drug concentration.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Antibióticos Antineoplásicos/farmacocinética , Ciclo Celular/efectos de los fármacos , Doxorrubicina/farmacocinética , Resistencia a Antineoplásicos , Eliminación de Gen , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Genetics ; 177(1): 17-30, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17603101

RESUMEN

Siz1 and Siz2/Nfi1 are the two Siz/PIAS SUMO E3 ligases in Saccharomyces cerevisiae. Here we show that siz1Delta siz2Delta mutants fail to grow in the absence of the homologous recombination pathway or the Fen1 ortholog RAD27. Remarkably, the growth defects of mutants such as siz1Delta siz2Delta rad52Delta are suppressed by mutations in TOP1, suggesting that these growth defects are caused by topoisomerase I activity. Other mutants that affect SUMO conjugation, including a ulp1 mutant and the nuclear pore mutants nup60Delta and nup133Delta, show similar top1-suppressible synthetic defects with DNA repair mutants, suggesting that these phenotypes also result from reduced SUMO conjugation. siz1Delta siz2Delta mutants also display TOP1-independent genome instability phenotypes, including increased mitotic recombination and elongated telomeres. We also show that SUMO conjugation, TOP1, and RAD27 have overlapping roles in telomere maintenance. Top1 is sumoylated, but Top1 does not appear to be the SUMO substrate involved in the synthetic growth defects. However, sumoylation of certain substrates, including Top1 itself and Tri1 (YMR233W), is enhanced in the absence of Top1 activity. Sumoylation is also required for growth of top1Delta cells. These results suggest that the SUMO pathway has a complex effect on genome stability that involves several mechanistically distinct processes.


Asunto(s)
Supervivencia Celular , Reparación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Daño del ADN , Pérdida de Heterocigocidad , Mutación , Fenotipo , Recombinación Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Telómero
6.
Mol Cell Biol ; 25(10): 4311-20, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15870299

RESUMEN

Attachment of the ubiquitin-like protein SUMO to other proteins is an essential process in Saccharomyces cerevisiae. However, yeast mutants lacking the SUMO ligases Siz1 and Siz2/Nfi1 are viable, even though they show dramatically reduced levels of SUMO conjugation. This siz1Delta siz2Delta double mutant is cold sensitive and has an unusual phenotype in that it forms irregularly shaped colonies that contain sectors of wild-type-appearing cells as well as sectors of enlarged cells that are arrested in G(2)/M. We have found that these phenotypes result from misregulation of the copy number of the endogenous yeast plasmid, the 2 microm circle. siz1Delta siz2Delta mutants have up to 40-fold-higher levels of 2 microm than do wild-type strains. Furthermore, 2 microm is responsible for the siz1Delta siz2Delta mutant's obvious growth defects, as siz1Delta siz2Delta [cir(0)] strains, which lack 2 microm, are no longer heterogeneous and show growth characteristics similar to those of the wild type. Possible mechanisms for SUMO's effect on 2 microm are suggested by the finding that both Flp1 recombinase and Rep2, two of the four proteins encoded by 2 microm, are covalently modified by SUMO. Our data suggest that SUMO attachment negatively regulates Flp1 levels, which may partially account for the increased 2 microm copy number in the siz1Delta siz2Delta strain.


Asunto(s)
Mutación/genética , Plásmidos/genética , Plásmidos/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proliferación Celular , ADN Nucleotidiltransferasas/química , ADN Nucleotidiltransferasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Dosificación de Gen , Lisina/metabolismo , Fenotipo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Hum Immunol ; 76(12): 903-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26423535

RESUMEN

We have evaluated and validated the NXType™ workflow (One Lambda, Inc.) and the accompanying TypeStream™ software on the Ion Torrent Next Generation Sequencing (NGS) platform using a comprehensive testing panel. The panel consisted of 285 genomic DNA (gDNA) samples derived from four major ethnic populations and contained 59 PT samples and 226 clinical specimens. The total number of alleles from the six loci interrogated by NGS was 3420. This validation panel provided a wide range of HLA sequence variations including many rare alleles, new variants and homozygous alleles. The NXType™ system (reagents and software) was able to correctly genotype the vast majority of these specimens. The concordance rate between SBT-derived genotypes and those generated by TypeStream™ auto-analysis ranged from 99.5% to 99.8% for the HLA-A, B, C, DRB1 and DQB1 loci, and was 98.9% for HLA-DPB1. A strategy for data review was developed that would allow correction of most of the few remaining typing errors. The entire NGS workflow from gDNA amplification to genotype assignment could be completed within 3 working days. Through this validation study, the limitations and shortcomings of the platform, specific assay system, and software algorithm were also revealed for further evaluation and improvement.


Asunto(s)
Antígenos HLA/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Prueba de Histocompatibilidad , Alelos , Biología Computacional/métodos , Biblioteca de Genes , Variación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
8.
Arch Pathol Lab Med ; 139(4): 508-17, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25356985

RESUMEN

CONTEXT: Next-generation sequencing allows for high-throughput processing and sensitive variant detection in multiple genes from small samples. For many diseases, including cancer, a comprehensive mutational profile of a targeted list of genes can be used to simultaneously inform patient care, establish eligibility for ongoing clinical trials, and further research. OBJECTIVE: To validate a pan-cancer, next-generation-sequencing assay for use in the clinical laboratory. DESIGN: DNA was extracted from 68 clinical specimens (formalin-fixed, paraffin-embedded; fine-needle aspirates; peripheral blood; or bone marrow) and 5 normal controls. Sixty-four DNA samples (94%; 64 of 68) were successfully processed with the TruSeq Amplicon Cancer Panel (Illumina Inc, San Diego, California) and sequenced in 4 sequencing runs. The data were analyzed at 4 different filter settings for sequencing coverage and variant frequency cutoff. RESULTS: Libraries created from 40 specimens could be successfully sequenced in a single run and still yield sufficient coverage for robust data analysis of individual samples. Sensitivity for mutation detection down to 5% was demonstrated using dilutions of clinical specimens and control samples. The test was highly repeatable and reproducible and showed 100% concordance with clinically validated Sanger sequencing results. Comparison to an alternate next-generation sequencing technology was performed by also processing 9 of the specimens with the AmpliSeq Cancer Hotspot Panel (version 2; Life Technologies, Grand Island, New York). Thirty of the 31 (97%) TruSeq-detected variants covered by the designs of both panels were confirmed. CONCLUSIONS: A sensitive, high-throughput, pan-cancer mutation panel for sequencing of cancer hot-spot mutations in 42 genes was validated for routine use in clinical testing.


Asunto(s)
Técnicas de Laboratorio Clínico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neoplasias/genética , ADN de Neoplasias/química , ADN de Neoplasias/genética , ADN de Neoplasias/aislamiento & purificación , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Humanos , Neoplasias/diagnóstico , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados
9.
Mol Cell Biol ; 34(12): 2249-63, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24710277

RESUMEN

Activation of the meiotic transcription factor Ndt80 is a key regulatory transition in the life cycle of Saccharomyces cerevisiae because it triggers exit from pachytene and entry into meiosis. The NDT80 promoter is held inactive by a complex containing the DNA-binding protein Sum1 and the histone deacetylase Hst1. Meiosis-specific phosphorylation of Sum1 by the protein kinases Cdk1, Ime2, and Cdc7 is required for NDT80 expression. Here, we show that the S-phase-promoting cyclin Clb5 activates Cdk1 to phosphorylate most, and perhaps all, of the 11 minimal cyclin-dependent kinase (CDK) phospho-consensus sites (S/T-P) in Sum1. Nine of these sites can individually promote modest levels of meiosis, yet these sites function in a quasiadditive manner to promote substantial levels of meiosis. Two Cdk1 sites and an Ime2 site individually promote high levels of meiosis, likely by preparing Sum1 for phosphorylation by Cdc7. Chromatin immunoprecipitation reveals that the phosphorylation sites are required for removal of Sum1 from the NDT80 promoter. We also find that Sum1, but not its partner protein Hst1, is required to repress NDT80 transcription. Thus, while the phosphorylation of Sum1 may lead to dissociation from DNA by influencing Hst1, it is the presence of Sum1 on DNA that determines whether NDT80 will be expressed.


Asunto(s)
Profase Meiótica I , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fenotipo , Fosforilación , Regiones Promotoras Genéticas/genética , Recombinación Genética/genética , Transcripción Genética
10.
J Cell Biol ; 201(1): 145-63, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23547032

RESUMEN

Like ubiquitin, the small ubiquitin-related modifier (SUMO) proteins can form oligomeric "chains," but the biological functions of these superstructures are not well understood. Here, we created mutant yeast strains unable to synthesize SUMO chains (smt3(allR)) and subjected them to high-content microscopic screening, synthetic genetic array (SGA) analysis, and high-density transcript profiling to perform the first global analysis of SUMO chain function. This comprehensive assessment identified 144 proteins with altered localization or intensity in smt3(allR) cells, 149 synthetic genetic interactions, and 225 mRNA transcripts (primarily consisting of stress- and nutrient-response genes) that displayed a >1.5-fold increase in expression levels. This information-rich resource strongly implicates SUMO chains in the regulation of chromatin. Indeed, using several different approaches, we demonstrate that SUMO chains are required for the maintenance of normal higher-order chromatin structure and transcriptional repression of environmental stress response genes in budding yeast.


Asunto(s)
Cromatina/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Sumoilación/fisiología , Cromatina/genética , Mutación , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína SUMO-1/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
11.
DNA Repair (Amst) ; 10(12): 1243-51, 2011 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21968059

RESUMEN

The two Siz/PIAS SUMO E3 ligases Siz1 and Siz2 are responsible for the vast majority of sumoylation in Saccharomyces cerevisiae. We found that siz1Δ siz2Δ mutants are sensitive to ultra-violet (UV) light. Epistasis analysis showed that the SIZ genes act in the nucleotide excision repair (NER) pathway, and suggested that they participate both in global genome repair (GGR) and in the Rpb9-dependent subpathway of transcription-coupled repair (TCR), but have minimal role in Rad26-dependent TCR. Quantitative analysis of NER at the single-nucleotide level showed that siz1Δ siz2Δ is deficient in repair of both the transcribed and non-transcribed strands of the DNA. These experiments confirmed that the SIZ genes participate in GGR. Their role in TCR remains unclear. It has been reported previously that mutants deficient for the SUMO conjugating enzyme Ubc9 contain reduced levels of Rad4, the yeast homolog of human XPC. However, our experiments do not support the conclusion that SUMO conjugation affects Rad4 levels. We found that several factors that participate in NER are sumoylated, including Rad4, Rad16, Rad7, Rad1, Rad10, Ssl2, Rad3, and Rpb4. Although Rad16 was heavily sumoylated, elimination of the major SUMO attachment sites in Rad16 had no detectable effect on UV resistance or removal of DNA lesions. SUMO attachment to most of these NER factors was significantly increased by DNA damage. Furthermore, SUMO-modified Rad4 accumulated in NER mutants that block the pathway downstream of Rad4, suggesting that SUMO becomes attached to Rad4 at a specific point during its functional cycle. Collectively, these results suggest that SIZ-dependent sumoylation may modulate the activity of multiple proteins to promote efficient NER.


Asunto(s)
Reparación del ADN , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genoma Fúngico/genética , Genoma Fúngico/efectos de la radiación , Cinética , Mutación , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Sumoilación/efectos de la radiación , Rayos Ultravioleta
12.
Mol Biol Cell ; 20(4): 1241-51, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19109426

RESUMEN

Many Saccharomyces cerevisiae mutants defective in the SUMO pathway accumulate elevated levels of the native 2 microm circle plasmid (2 microm). Here we show that accumulation of 2 microm in the SUMO pathway mutants siz1Delta siz2Delta, slx5Delta, and slx8Delta is associated with formation of an aberrant high-molecular-weight (HMW) form of 2 microm. Characterization of this species from siz1Delta siz2Delta showed that it contains tandem copies of the 2 mum sequence as well as single-stranded DNA. Accumulation of this species requires both the 2 microm-encoded Flp recombinase and the cellular homologous recombination repair (HRR) pathway. Importantly, reduced SUMO attachment to Flp is sufficient to induce formation of this species. Our data suggest a model in which Flp that cannot be sumoylated causes DNA damage, whose repair via HRR produces an intermediate that generates tandem copies of the 2 microm sequence. This intermediate may be a rolling circle formed via break-induced replication (BIR), because mutants defective in BIR contain reduced levels of the HMW form. This work also illustrates the importance of using cir(o) strains when studying mutants that affect the yeast SUMO pathway, to avoid confusing direct functions of the SUMO pathway with secondary effects of 2 microm amplification.


Asunto(s)
ADN Nucleotidiltransferasas/metabolismo , Replicación del ADN , ADN Circular/genética , Plásmidos/genética , Recombinación Genética , Saccharomyces cerevisiae/enzimología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencia de Bases , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/metabolismo , Genes Fúngicos , Modelos Genéticos , Peso Molecular , Mutación/genética , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Biol Chem ; 282(47): 34167-75, 2007 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17728242

RESUMEN

Posttranslational protein modification with small ubiquitin-related modifier (SUMO) is an important regulatory mechanism implicated in many cellular processes, including several of biomedical relevance. We report that inhibition of the proteasome leads to accumulation of proteins that are simultaneously conjugated to both SUMO and ubiquitin in yeast and in human cells. A similar accumulation of such conjugates was detected in Saccharomyces cerevisiae ubc4 ubc5 cells as well as in mutants lacking two RING finger proteins, Ris1 and Hex3/Slx5-Slx8, that bind to SUMO as well as to the ubiquitin-conjugating enzyme Ubc4. In vitro, Hex3-Slx8 complexes promote Ubc4-dependent ubiquitylation. Together these data identify a previously unrecognized pathway that mediates the proteolytic down-regulation of sumoylated proteins. Formation of substrate-linked SUMO chains promotes targeting of SUMO-modified substrates for ubiquitin-mediated proteolysis. Genetic and biochemical evidence indicates that SUMO conjugation can ultimately lead to inactivation of sumoylated substrates by polysumoylation and/or ubiquitin-dependent degradation. Simultaneous inhibition of both mechanisms leads to severe phenotypic defects.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/fisiología , Células HeLa , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma , Proteína SUMO-1/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas
14.
J Cell Sci ; 119(Pt 22): 4749-57, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17077124

RESUMEN

Saccharomyces cerevisiae contains two Siz/PIAS SUMO E3 ligases, Siz1 and Siz2/Nfi1, and one other known ligase, Mms21. Although ubiquitin ligases are highly substrate-specific, the degree to which SUMO ligases target distinct sets of substrates is unknown. Here we show that although Siz1 and Siz2 each have unique substrates in vivo, sumoylation of many substrates can be stimulated by either protein. Furthermore, in the absence of both Siz proteins, many of the same substrates are still sumoylated at low levels. Some of this residual sumoylation depends on MMS21. Siz1 targets its unique substrates through at least two distinct domains. Sumoylation of PCNA (proliferating cell nuclear antigen) and the splicing factor Prp45 requires part of the N-terminal region of Siz1, the ;PINIT' domain, whereas sumoylation of the bud neck-associated septin proteins Cdc3, Cdc11 and Shs1/Sep7 requires the C-terminal domain of Siz1, which is also sufficient for cell cycle-dependent localization of Siz1 to the bud neck. Remarkably, the non-sumoylated septins Cdc10 and Cdc12 also undergo Siz1-dependent sumoylation if they are fused to the short PsiKXE SUMO attachment-site sequence. Collectively, these results suggest that local concentration of the E3, rather than a single direct interaction with the substrate polypeptide, is the major factor in substrate selectivity by Siz proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Consenso , Mutación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética
15.
J Proteome Res ; 5(4): 761-70, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16602682

RESUMEN

A growing number of biological processes have been found to be regulated by the covalent attachment of the ubiquitin-like protein SUMO to key cellular targets. A critical step in the process of analyzing the role of SUMO in regulating the activity of these proteins is the identification of the lysine residues that are targeted by this modification. Unfortunately, current methods aimed at mapping these attachment-sites are laborious and often ineffective. We report here the development of a platform that combines the use of different C-terminal SUMO mutants with different protease digestion strategies to enable the rapid and efficient identification of SUMO attachment sites. We successfully apply this approach to several model SUMO substrates as well as to a mixture of SUMO conjugates purified from Saccharomyces cerevisiae. Although we specifically employ this strategy for the identification of SUMO attachment sites in yeast, this general approach can easily be adapted to map the sites of conjugation for other ubiquitin-like proteins from a wide range of organisms.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Glutatión/metabolismo , Lisina/análisis , Lisina/química , Espectrometría de Masas , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/aislamiento & purificación , Especificidad por Sustrato , Tripsina/farmacología
16.
Biochemistry ; 45(3): 1035-42, 2006 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-16411780

RESUMEN

Sumoylation, the process by which the ubiquitin-related SUMO protein is covalently attached to lysine side chains in other proteins, is involved in numerous processes in the eukaryotic cell, including transcriptional repression. In this study, we identify Gcn5, the histone-modifying subunit of the transcriptional regulatory complex SAGA, as a sumoylation substrate in yeast. In vitro, multiple sumoylation of recombinant Gcn5 alone or as a trimer with its interacting proteins Ada2 and Ada3 did not affect Gcn5's histone acetyltransferase (HAT) activity, suggesting that modification of Gcn5 with yeast SUMO (Smt3) may not directly regulate its HAT function. Through site-directed mutagenesis, the primary in vivo sumoylation site was identified as lysine-25, although an unsumoylatable K-to-R mutation of this residue led to no obvious in vivo effects. However, fusion of SUMO to the N-terminus of Gcn5 to mimic constitutive sumoylation resulted in defective growth on 3-aminotriazole media and reduced basal and activated transcription of the SAGA-dependent gene TRP3. Taken together with recent identification of multiple additional subunits of SAGA as sumoylated proteins in vivo, these data suggest that Gcn5 sumoylation may have an inhibitory role in transcriptional regulation.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Escherichia coli/genética , Histona Acetiltransferasas/genética , Lisina/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Genes Dev ; 20(8): 966-76, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16598039

RESUMEN

Covalent histone post-translational modifications such as acetylation, methylation, phosphorylation, and ubiquitylation play pivotal roles in regulating many cellular processes, including transcription, response to DNA damage, and epigenetic control. Although positive-acting post-translational modifications have been studied in Saccharomyces cerevisiae, histone modifications that are associated with transcriptional repression have not been shown to occur in this yeast. Here, we provide evidence that histone sumoylation negatively regulates transcription in S. cerevisiae. We show that all four core histones are sumoylated and identify specific sites of sumoylation in histones H2A, H2B, and H4. We demonstrate that histone sumoylation sites are involved directly in transcriptional repression. Further, while histone sumoylation occurs at all loci tested throughout the genome, slightly higher levels occur proximal to telomeres. We observe a dynamic interplay between histone sumoylation and either acetylation or ubiquitylation, where sumoylation serves as a potential block to these activating modifications. These results indicate that sumoylation is the first negative histone modification to be identified in S. cerevisiae and further suggest that sumoylation may serve as a general dynamic mark to oppose transcription.


Asunto(s)
Histonas/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Secuencia de Aminoácidos , Western Blotting , Inmunoprecipitación , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Telómero , Ubiquitina/metabolismo
18.
J Biol Chem ; 280(25): 23566-75, 2005 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-15817450

RESUMEN

Eukaryotic DNA topoisomerase I (Top1p) has important functions in DNA replication, transcription, and recombination. This enzyme also constitutes the cellular target of camptothecin (CPT), which induces S-phase-dependent cytotoxicity. To define cellular pathways that regulate cell sensitivity to Top1p-induced DNA lesions, we described a yeast genetic screen for conditional tah (top1T722A-hypersensitive) mutants with enhanced sensitivity to low levels of the CPT mimetic mutant top1T722A (Reid, R. J., Fiorani, P., Sugawara, M., and Bjornsti, M. A. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11440-11445; Fiorani, P., Reid, R. J., Schepis, A., Jacquiau, H. R., Guo, H., Thimmaiah, P., Benedetti, P., and Bjornsti, M. A. (2004) J. Biol. Chem. 279, 21271-21281). Here we report that tah mutant ubc9-10 harbors a hypomorphic allele of UBC9, which encodes the essential SUMO (small ubiquitin-related modifier) E2-conjugating enzyme. The same conditional ubc9P123L mutant was also isolated in an independent screen for enhanced sensitivity to a distinct Top1p poison, Top1N726Hp. The ubc9-10 mutant exhibited a decrease in global protein sumoylation and increased sensitivity to a wide range of DNA-damaging agents independent of Top1p. Deletion of the Ulp2 SUMO protease failed to restore ubc9-10 cell resistance to Top1p poisons or hydroxyurea yet adversely affected wild-type TOP1 cell genetic stability and sensitivity to hydroxyurea. Moreover, although mutation of different consensus SUMO sites in the N terminus and linker region of yeast Top1p failed to recapitulate ubc9-10 mutant phenotypes, they revealed distinct and subtle effects on cell sensitivity to CPT. These results provide insights into the complexities of SUMO conjugation and the confounding effects of SUMO modification on Top1p function and cell sensitivity to genotoxic agents.


Asunto(s)
Daño del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Annu Rev Biochem ; 73: 355-82, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15189146

RESUMEN

Small ubiquitin-related modifier (SUMO) family proteins function by becoming covalently attached to other proteins as post-translational modifications. SUMO modifies many proteins that participate in diverse cellular processes, including transcriptional regulation, nuclear transport, maintenance of genome integrity, and signal transduction. Reversible attachment of SUMO is controlled by an enzyme pathway that is analogous to the ubiquitin pathway. The functional consequences of SUMO attachment vary greatly from substrate to substrate, and in many cases are not understood at the molecular level. Frequently SUMO alters interactions of substrates with other proteins or with DNA, but SUMO can also act by blocking ubiquitin attachment sites. An unusual feature of SUMO modification is that, for most substrates, only a small fraction of the substrate is sumoylated at any given time. This review discusses our current understanding of how SUMO conjugation is controlled, as well as the roles of SUMO in a number of biological processes.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Cisteína Endopeptidasas/metabolismo , Reparación del ADN , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Neutrófilos/metabolismo , Complejo de la Endopetidasa Proteasomal , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Transcripción Genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/metabolismo
20.
J Biol Chem ; 278(45): 44113-20, 2003 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-12941945

RESUMEN

The ubiquitin-related protein SUMO functions by becoming covalently attached to lysine residues in other proteins. Unlike ubiquitin, which is often linked to its substrates as a polyubiquitin chain, only one SUMO moiety is attached per modified site in most substrates. However, SUMO has recently been shown to form chains in vitro and in mammalian cells, with a lysine in the non-ubiquitin-like N-terminal extension serving as the major SUMO-SUMO branch site. To investigate the physiological function of SUMO chains, we generated Saccharomyces cerevisiae strains that expressed mutant SUMOs lacking various lysine residues. Otherwise wild-type strains lacking any of the nine lysines in SUMO were viable, had no obvious growth defects or stress sensitivities, and had SUMO conjugate patterns that did not differ dramatically from wild type. However, mutants lacking the SUMO-specific isopeptidase Ulp2 accumulated high molecular weight SUMO-containing species, which formed only when the N-terminal lysines of SUMO were present, suggesting that they contained SUMO chains. Furthermore SUMO branch-site mutants suppressed several of the phenotypes of ulp2delta, consistent with the possibility that some ulp2delta phenotypes are caused by accumulation of SUMO chains. We also found that a mutant SUMO whose non-ubiquitin-like N-terminal domain had been entirely deleted still carried out all the essential functions of SUMO. Thus, the ubiquitin-like domain of SUMO is sufficient for conjugation and all downstream functions required for yeast viability. Our data suggest that SUMO can form chains in vivo in yeast but demonstrate conclusively that chain formation is not required for the essential functions of SUMO in S. cerevisiae.


Asunto(s)
Endopeptidasas/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Escherichia coli/genética , Expresión Génica , Lisina/genética , Datos de Secuencia Molecular , Peso Molecular , Mutagénesis , Reacción en Cadena de la Polimerasa , Proteína SUMO-1/química , Proteína SUMO-1/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Temperatura , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA