Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(42): 24226-24235, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33084667

RESUMEN

We present a quantitative study comparing the binding of 4-methoxypyridine, MeOPy, ligand to Co(ii)octaethylporphyrin, CoOEP, at the phenyloctane/HOPG interface and in toluene solution. Scanning tunneling microscopy (STM) was used to study the ligand binding to the porphyrin receptors adsorbed on graphite. Electronic spectroscopy was employed for examining this process in fluid solution. The on surface coordination reaction was completely reversible and followed a simple Langmuir adsorption isotherm. Ligand affinities (or ΔG) for the binding processes in the two different chemical environments were determined from the respective equilibrium constants. The free energy value of -13.0 ± 0.3 kJ mol-1 for the ligation reaction of MeOPy to CoOEP at the solution/HOPG interface is less negative than the ΔG for cobalt porphyrin complexed to the ligand in solution, -16.8 ± 0.2 kJ mol-1. This result indicates that the MeOPy-CoOEP complex is more stable in solution than on the surface. Additional thermodynamic values for the formation of the surface ligated species (ΔHc = -50 kJ mol-1 and ΔSc = -120 J mol-1) were extracted from temperature dependent STM measurements. Density functional computational methods were also employed to explore the energetics of both the solution and surface reactions. At high concentrations of MeOPy the monolayer was observed to be stripped from the surface. Computational results indicate that this is not because of a reduction in adsorption energy of the MeOPy-CoOEP complex. Nearest neighbor analysis of the MeOPy-CoOEP in the STM images revealed positive cooperative ligand binding behavior. Our studies bring new insights to the general principles of affinity and cooperativity in the ligand-receptor interactions at the solution/solid interface. Future applications of STM will pave the way for new strategies designing highly functional multisite receptor systems for sensing, catalysis, and pharmacological applications.

2.
Langmuir ; 35(15): 5271-5280, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30945877

RESUMEN

This study explores directed noncovalent bonding in the self-assembly of nonplanar aromatic carboxylic acids on gold and graphite surfaces. It is the first step in developing a new design strategy to create two-dimensional surface metal-organic frameworks (SURFMOFs). The acid molecules used are tetraphenylethene-based and are typically employed in the synthesis of three-dimensional (3D) MOF crystalline solids. They include tetraphenylethene tetracarboxylic acid, tetraphenylethene bisphenyl carboxylic acid, and tetraphenylethene tetrakis-phenyl carboxylic acid. The two-dimensional structures formed from these molecules on highly ordered pyrolytic graphite (HOPG) and Au(111) are studied by scanning tunneling microscopy in a solution environment. The process of monolayer formation and final surface linker structures are found to be strongly dependent on the combination of the molecule and substrate used and are discussed in terms of intermolecular and molecule-substrate interactions, bonding geometry, and symmetry of the acid molecules. In the case of linker self-assembly on HOPG, the molecule-substrate interactions play a significant role in the resulting surface structure. When the acid molecules are adsorbed on Au(111), the intermolecular interactions tend to dominate over the weaker molecule-substrate bonding. Additionally, the interplay of π-π interactions and hydrogen bonding that directs the surface self-assembly on different supports can be modified by varying the linker concentration. This is particularly applicable for the case of the acid molecules adsorbing on the Au(111) substrate. Precise control over predesigned surface structures and orientation of the nonplanar aromatic carboxylic linkers open up an exciting prospect for manipulating the direction of SURFMOF growth in two dimensions and potentially in 3D.

3.
J Clin Microbiol ; 52(9): 3196-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24951799

RESUMEN

The accurate performance of the Vitek 2 GP67 card for detecting methicillin-resistant coagulase-negative staphylococci (CoNS) is not known. We prospectively determined the ability of the Vitek 2 GP67 card to accurately detect methicillin-resistant CoNS, with mecA PCR results used as the gold standard for a 4-month period in 2012. Included in the study were 240 consecutively collected nonduplicate CoNS isolates. Cefoxitin susceptibility by disk diffusion testing was determined for all isolates. We found that the three tested systems, Vitek 2 oxacillin and cefoxitin testing and cefoxitin disk susceptibility testing, lacked specificity and, in some cases, sensitivity for detecting methicillin resistance. The Vitek 2 oxacillin and cefoxitin tests had very major error rates of 4% and 8%, respectively, and major error rates of 38% and 26%, respectively. Disk cefoxitin testing gave the best performance, with very major and major error rates of 2% and 24%, respectively. The test performances were species dependent, with the greatest errors found for Staphylococcus saprophyticus. While the 2014 CLSI guidelines recommend reporting isolates that test resistant by the oxacillin MIC or cefoxitin disk test as oxacillin resistant, following such guidelines produces erroneous results, depending on the test method and bacterial species tested. Vitek 2 cefoxitin testing is not an adequate substitute for cefoxitin disk testing. For critical-source isolates, mecA PCR, rather than Vitek 2 or cefoxitin disk testing, is required for optimal antimicrobial therapy.


Asunto(s)
Resistencia a la Meticilina , Pruebas de Sensibilidad Microbiana/métodos , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Staphylococcus/efectos de los fármacos , Staphylococcus/aislamiento & purificación , Cefoxitina/farmacología , Coagulasa/deficiencia , Errores Diagnósticos , Humanos , Oxacilina/farmacología , Staphylococcus/clasificación
4.
J Phys Chem Lett ; 13(22): 4918-4923, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35635095

RESUMEN

Kinetic analysis of surface reactions at the single molecule level is important for understanding the influence of the substrate and solvent on reaction dynamics and mechanisms, but it is difficult with current methods. Here we present a stochastic kinetic analysis of the oxygenation of cobalt octaethylporphyrin (CoOEP) at the solution/solid interface by monitoring fluctuations from equilibrium using scanning tunneling microscopy (STM) imaging. Image movies were used to monitor the oxygenated and deoxygenated state dwell times. The rate constants for CoOEP oxygenation are ka = 4.9 × 10-6 s-1·Torr-1 and kd = 0.018 s-1. This is the first use of stochastic dwell time analysis with STM to study a chemical reaction, and the results suggest that it has great potential for application to a wide range of surface reactions. Expanding these stochastic studies to further systems is key to unlocking kinetic information for surface-confined reactions at the molecular level, especially at the solution/solid interface.


Asunto(s)
Porfirinas , Cobalto/química , Cinética , Microscopía de Túnel de Rastreo , Porfirinas/química , Imagen Individual de Molécula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA