Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(9): 2095-2116, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670067

RESUMEN

Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Inmunidad de la Planta , Plantas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Plantas/inmunología , Plantas/genética , Resistencia a la Enfermedad/genética , Humanos
2.
Cell ; 184(13): 3358-3360, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34171318

RESUMEN

Plant intracellular NLR proteins detect pathogen effectors and then form multimeric protein complexes ("resistosomes") that activate immune responses and cell death through unknown mechanisms. In this issue of Cell, Bi et al. show that the ZAR1 resistosome exhibits cation channel activity, enabling calcium influx that activates defense mechanisms and culminates in cell death.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Muerte Celular , Plantas , Transducción de Señal
3.
Cell ; 178(5): 1260-1272.e14, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442410

RESUMEN

Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas NLR/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Variación Genética , Genoma de Planta , Proteínas NLR/metabolismo , Enfermedades de las Plantas/genética , Inmunidad de la Planta , Especificidad de la Especie
4.
Cell ; 161(5): 1089-1100, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000484

RESUMEN

Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas Bacterianas/inmunología , Inmunidad Innata , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/patogenicidad , Pseudomonas syringae/inmunología , Pseudomonas syringae/metabolismo , Nicotiana/inmunología , Nicotiana/microbiología
5.
EMBO J ; 42(5): e111484, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592032

RESUMEN

Plant pathogens compromise crop yields. Plants have evolved robust innate immunity that depends in part on intracellular Nucleotide-binding, Leucine rich-Repeat (NLR) immune receptors that activate defense responses upon detection of pathogen-derived effectors. Most "sensor" NLRs that detect effectors require the activity of "helper" NLRs, but how helper NLRs support sensor NLR function is poorly understood. Many Solanaceae NLRs require NRC (NLR-Required for Cell death) class of helper NLRs. We show here that Rpi-amr3, a sensor NLR from Solanum americanum, detects AVRamr3 from the potato late blight pathogen, Phytophthora infestans, and activates oligomerization of helper NLRs NRC2 and NRC4 into high-molecular-weight resistosomes. In contrast, recognition of P. infestans effector AVRamr1 by another sensor NLR Rpi-amr1 induces formation of only the NRC2 resistosome. The activated NRC2 oligomer becomes enriched in membrane fractions. ATP-binding motifs of both Rpi-amr3 and NRC2 are required for NRC2 resistosome formation, but not for the interaction of Rpi-amr3 with its cognate effector. NRC2 resistosome can be activated by Rpi-amr3 upon detection of AVRamr3 homologs from other Phytophthora species. Mechanistic understanding of NRC resistosome formation will underpin engineering crops with durable disease resistance.


Asunto(s)
Proteínas NLR , Plantas , Proteínas NLR/metabolismo , Plantas/metabolismo , Resistencia a la Enfermedad , Dominios Proteicos , Inmunidad de la Planta , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Nature ; 592(7852): 110-115, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33692545

RESUMEN

The plant immune system involves cell-surface receptors that detect intercellular pathogen-derived molecules, and intracellular receptors that activate immunity upon detection of pathogen-secreted effector proteins that act inside the plant cell. Immunity mediated by surface receptors has been extensively studied1, but that mediated by intracellular receptors has rarely been investigated in the absence of surface-receptor-mediated immunity. Furthermore, interactions between these two immune pathways are poorly understood. Here, by activating intracellular receptors without inducing surface-receptor-mediated immunity, we analyse interactions between these two distinct immune systems in Arabidopsis. Pathogen recognition by surface receptors activates multiple protein kinases and NADPH oxidases, and we find that intracellular receptors primarily potentiate the activation of these proteins by increasing their abundance through several mechanisms. Likewise, the hypersensitive response that depends on intracellular receptors is strongly enhanced by the activation of surface receptors. Activation of either immune system alone is insufficient to provide effective resistance against the bacterial pathogen Pseudomonas syringae. Thus, immune pathways activated by cell-surface and intracellular receptors in plants mutually potentiate to activate strong defences against pathogens. These findings reshape our understanding of plant immunity and have broad implications for crop improvement.


Asunto(s)
Arabidopsis/inmunología , Proteínas NLR/inmunología , Inmunidad de la Planta/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Arabidopsis/citología , Arabidopsis/microbiología , Muerte Celular , NADPH Oxidasas/metabolismo , Células Vegetales/inmunología , Células Vegetales/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas Quinasas/metabolismo , Pseudomonas fluorescens/inmunología , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Transducción de Señal/inmunología
7.
Proc Natl Acad Sci U S A ; 120(7): e2217114120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36753463

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) has emerged as a key component in prokaryotic and eukaryotic immune systems. The recent discovery that Toll/interleukin-1 receptor (TIR) proteins function as NAD+ hydrolases (NADase) links NAD+-derived small molecules with immune signaling. We investigated pathogen manipulation of host NAD+ metabolism as a virulence strategy. Using the pangenome of the model bacterial pathogen Pseudomonas syringae, we conducted a structure-based similarity search from 35,000 orthogroups for type III effectors (T3Es) with potential NADase activity. Thirteen T3Es, including five newly identified candidates, were identified that possess domain(s) characteristic of seven NAD+-hydrolyzing enzyme families. Most Pseudomonas syringae strains that depend on the type III secretion system to cause disease, encode at least one NAD+-manipulating T3E, and many have several. We experimentally confirmed the type III-dependent secretion of a novel T3E, named HopBY, which shows structural similarity to both TIR and adenosine diphosphate ribose (ADPR) cyclase. Homologs of HopBY were predicted to be type VI effectors in diverse bacterial species, indicating potential recruitment of this activity by microbial proteins secreted during various interspecies interactions. HopBY efficiently hydrolyzes NAD+ and specifically produces 2'cADPR, which can also be produced by TIR immune receptors of plants and by other bacteria. Intriguingly, this effector promoted bacterial virulence, indicating that 2'cADPR may not be the signaling molecule that directly initiates immunity. This study highlights a host-pathogen battleground centered around NAD+ metabolism and provides insight into the NAD+-derived molecules involved in plant immunity.


Asunto(s)
ADP-Ribosa Cíclica , NAD , Virulencia , NAD/metabolismo , ADP-Ribosa Cíclica/metabolismo , Bacterias/metabolismo , Plantas/metabolismo , Pseudomonas syringae/metabolismo , NAD+ Nucleosidasa/genética , NAD+ Nucleosidasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología
8.
Proc Natl Acad Sci U S A ; 120(11): e2210406120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877846

RESUMEN

Plant disease resistance involves both detection of microbial molecular patterns by cell-surface pattern recognition receptors and detection of pathogen effectors by intracellular NLR immune receptors. NLRs are classified as sensor NLRs, involved in effector detection, or helper NLRs required for sensor NLR signaling. TIR-domain-containing sensor NLRs (TNLs) require helper NLRs NRG1 and ADR1 for resistance, and helper NLR activation of defense requires the lipase-domain proteins EDS1, SAG101, and PAD4. Previously, we found that NRG1 associates with EDS1 and SAG101 in a TNL activation-dependent manner [X. Sun et al., Nat. Commun. 12, 3335 (2021)]. We report here how the helper NLR NRG1 associates with itself and with EDS1 and SAG101 during TNL-initiated immunity. Full immunity requires coactivation and mutual potentiation of cell-surface and intracellular immune receptor-initiated signaling [B. P. M. Ngou, H.-K. Ahn, P. Ding, J. D. G. Jones, Nature 592, 110-115 (2021), M. Yuan et al., Nature 592, 105-109 (2021)]. We find that while activation of TNLs is sufficient to promote NRG1-EDS1-SAG101 interaction, the formation of an oligomeric NRG1-EDS1-SAG101 resistosome requires the additional coactivation of cell-surface receptor-initiated defense. These data suggest that NRG1-EDS1-SAG101 resistosome formation in vivo is part of the mechanism that links intracellular and cell-surface receptor signaling pathways.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Inmunidad de la Planta , Receptores Inmunológicos , Membrana Celular , Lipasa , Receptores Inmunológicos/genética
9.
Plant Cell ; 34(5): 1447-1478, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35167697

RESUMEN

Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.


Asunto(s)
Inmunidad de la Planta , Receptores de Reconocimiento de Patrones , Productos Agrícolas/metabolismo , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal/genética
10.
Plant Cell ; 34(9): 3400-3424, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35640532

RESUMEN

For most Gram-negative bacteria, pathogenicity largely depends on the type-III secretion system that delivers virulence effectors into eukaryotic host cells. The subcellular targets for the majority of these effectors remain unknown. Xanthomonas campestris, the causal agent of black rot disease of crucifers such as Brassica spp., radish, and turnip, delivers XopP, a highly conserved core-effector protein produced by X. campestris, which is essential for virulence. Here, we show that XopP inhibits the function of the host-plant exocyst complex by direct targeting of Exo70B, a subunit of the exocyst complex, which plays a significant role in plant immunity. XopP interferes with exocyst-dependent exocytosis and can do this without activating a plant NOD-like receptor that guards Exo70B in Arabidopsis. In this way, Xanthomonas efficiently inhibits the host's pathogen-associated molecular pattern (PAMP)-triggered immunity by blocking exocytosis of pathogenesis-related protein-1A, callose deposition, and localization of the FLAGELLIN SENSITIVE2 (FLS2) immune receptor to the plasma membrane, thus promoting successful infection. Inhibition of exocyst function without activating the related defenses represents an effective virulence strategy, indicating the ability of pathogens to adapt to host defenses by avoiding host immunity responses.


Asunto(s)
Arabidopsis , Xanthomonas campestris , Proteínas Bacterianas , Enfermedades de las Plantas , Inmunidad de la Planta , Virulencia
11.
New Phytol ; 243(1): 330-344, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38742296

RESUMEN

Arabidopsis Col-0 RPP2A and RPP2B confer recognition of Arabidopsis downy mildew (Hyaloperonospora arabidopsidis [Hpa]) isolate Cala2, but the identity of the recognized ATR2Cala2 effector was unknown. To reveal ATR2Cala2, an F2 population was generated from a cross between Hpa-Cala2 and Hpa-Noks1. We identified ATR2Cala2 as a non-canonical RxLR-type effector that carries a signal peptide, a dEER motif, and WY domains but no RxLR motif. Recognition of ATR2Cala2 and its effector function were verified by biolistic bombardment, ectopic expression and Hpa infection. ATR2Cala2 is recognized in accession Col-0 but not in Ler-0 in which RPP2A and RPP2B are absent. In ATR2Emoy2 and ATR2Noks1 alleles, a frameshift results in an early stop codon. RPP2A and RPP2B are essential for the recognition of ATR2Cala2. Stable and transient expression of ATR2Cala2 under 35S promoter in Arabidopsis and Nicotiana benthamiana enhances disease susceptibility. Two additional Col-0 TIR-NLR (TNL) genes (RPP2C and RPP2D) adjacent to RPP2A and RPP2B are quantitatively required for full resistance to Hpa-Cala2. We compared RPP2 haplotypes in multiple Arabidopsis accessions and showed that all four genes are present in all ATR2Cala2-recognizing accessions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Enfermedades de las Plantas , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oomicetos/patogenicidad , Proteínas NLR/metabolismo , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/inmunología , Secuencia de Aminoácidos , Alelos
12.
Plant Physiol ; 193(1): 259-270, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37307565

RESUMEN

The downy mildew oomycete Hyaloperonospora arabidopsidis, an obligate filamentous pathogen, infects Arabidopsis (Arabidopsis thaliana) by forming structures called haustoria inside host cells. Previous transcriptome analyses have revealed that host genes are specifically induced during infection; however, RNA profiling from whole-infected tissues may fail to capture key transcriptional events occurring exclusively in haustoriated host cells, where the pathogen injects virulence effectors to modulate host immunity. To determine interactions between Arabidopsis and H. arabidopsidis at the cellular level, we devised a translating ribosome affinity purification system using 2 high-affinity binding proteins, colicin E9 and Im9 (immunity protein of colicin E9), applicable to pathogen-responsive promoters, thus enabling haustoriated cell-specific RNA profiling. Among the host genes specifically expressed in H. arabidopsidis-haustoriated cells, we found genes that promote either susceptibility or resistance to the pathogen, providing insights into the Arabidopsis-downy mildew interaction. We propose that our protocol for profiling cell-specific transcripts will apply to several stimulus-specific contexts and other plant-pathogen interactions.


Asunto(s)
Arabidopsis , Colicinas , Oomicetos , Peronospora , Arabidopsis/genética , ARN/metabolismo , Colicinas/metabolismo , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética
13.
Mol Biol Rep ; 51(1): 199, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270712

RESUMEN

BACKGROUND: Brassica species is the second most important edible oilseed crop in India. Albugo candida (Pers.) Kuntze, a major oomycete disease of oilseed brassica causing white rust, leads to 60% yield loss globally. The prevalence of A. candida race 2 (Ac2V) that specifically infects B. juncea, coupled with limitations of conventional methods has resulted in a dearth of white rust resistance resources in cultivated varieties. METHODS AND RESULTS: In an effort to develop resistant plants, Agrobacterium mediated genetic transformation of three B. juncea genotypes viz., susceptible host var. Varuna, along with its doubled haploid mutant lines C66 and C69 (showing moderate tolerance to field isolates of A. candida) was initiated to transfer resistance genes (WRR8Sf-2 and WRR9Hi-0) identified in Arabidopsis thaliana against race Ac2V, that encode for Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat proteins that recognize effectors of the pathogen races. CONCLUSIONS: Our results demonstrate that introduction of resistance genes from a tertiary gene pool by genetic transformation enhances disease resistance in B. juncea genotypes to a highly virulent Ac2V isolate.


Asunto(s)
Arabidopsis , Oomicetos , Planta de la Mostaza/genética , Genotipo , Agrobacterium , Arabidopsis/genética , Candida
14.
Cell ; 137(4): 773-83, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19450522

RESUMEN

Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene expression. Here, we examined receptor-mediated HR PCD responses in autophagy-deficient Arabidopsis knockout mutants (atg), and show that infection-induced lesions are contained in atg mutants. We also provide evidence that HR cell death initiated via Toll/Interleukin-1 (TIR)-type immune receptors through the defense regulator EDS1 is suppressed in atg mutants. Furthermore, we demonstrate that PCD triggered by coiled-coil (CC)-type immune receptors via NDR1 is either autophagy-independent or engages autophagic components with cathepsins and other unidentified cell death mediators. Thus, autophagic cell death contributes to HR PCD and can function in parallel with other prodeath pathways.


Asunto(s)
Apoptosis , Arabidopsis/inmunología , Autofagia , Inmunidad Innata , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34880132

RESUMEN

Plants use intracellular nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-containing immune receptors (NLRs) to detect pathogen-derived effector proteins. The Arabidopsis NLR pair RRS1-R/RPS4 confers disease resistance to different bacterial pathogens by perceiving the structurally distinct effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia solanacearum via an integrated WRKY domain in RRS1-R. How the WRKY domain of RRS1 (RRS1WRKY) perceives distinct classes of effector to initiate an immune response is unknown. Here, we report the crystal structure of the in planta processed C-terminal domain of AvrRps4 (AvrRps4C) in complex with RRS1WRKY Perception of AvrRps4C by RRS1WRKY is mediated by the ß2-ß3 segment of RRS1WRKY that binds an electronegative patch on the surface of AvrRps4C Structure-based mutations that disrupt AvrRps4C-RRS1WRKY interactions in vitro compromise RRS1/RPS4-dependent immune responses. We also show that AvrRps4C can associate with the WRKY domain of the related but distinct RRS1B/RPS4B NLR pair, and the DNA-binding domain of AtWRKY41, with similar binding affinities and how effector binding interferes with WRKY-W-box DNA interactions. This work demonstrates how integrated domains in plant NLRs can directly bind structurally distinct effectors to initiate immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Muerte Celular , Clonación Molecular , ADN de Plantas , Regulación de la Expresión Génica de las Plantas/inmunología , Modelos Moleculares , Mutación , Proteínas de Plantas/genética , Conformación Proteica , Pseudomonas syringae/inmunología , Nicotiana
16.
Plant Biotechnol J ; 21(12): 2458-2472, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37530518

RESUMEN

Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.


Asunto(s)
Productos Agrícolas , Poliploidía , Secuencia de Bases , Mapeo Cromosómico/métodos , Mutación , Fenotipo , Productos Agrícolas/genética , Genoma de Planta/genética , Edición Génica
17.
New Phytol ; 237(2): 532-547, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35838065

RESUMEN

The oomycete Albugo candida causes white blister rust, an important disease of Brassica crops. Distinct races of A. candida are defined by their capacity to infect different host plant species. Each A. candida race encodes secreted proteins with a CX2 CX5 G ('CCG') motif that are polymorphic and show presence/absence variation, and are therefore candidate effectors. The White Rust Resistance 4 (WRR4) locus in Arabidopsis thaliana accession Col-0 contains three genes that encode intracellular nucleotide-binding domain leucine-rich repeat immune receptors. The Col-0 alleles of WRR4A and WRR4B confer resistance to multiple A. candida races, although both WRR4A and WRR4B can be overcome by the Col-0-virulent race 4 isolate AcEx1. Comparison of CCG candidate effectors in avirulent and virulent races, and transient co-expression of CCG effectors from four A. candida races in Nicotiana sp. or A. thaliana, revealed CCG effectors that trigger WRR4A- or WRR4B-dependent hypersensitive responses. We found eight WRR4A-recognised CCGs and four WRR4B-recognised CCGs, the first recognised proteins from A. candida for which the cognate immune receptors in A. thaliana are known. This multiple recognition capacity potentially explains the broad-spectrum resistance to several A. candida races conferred by WRR4 paralogues. We further show that of five tested CCGs, three confer enhanced disease susceptibility when expressed in planta, consistent with A. candida CCG proteins being effectors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica , Oomicetos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas NLR/metabolismo , Brassica/metabolismo , Oomicetos/metabolismo , Enfermedades de las Plantas/genética
18.
PLoS Biol ; 18(9): e3000783, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32925907

RESUMEN

Plant nucleotide-binding (NB) leucine-rich repeat (LRR) receptor (NLR) proteins function as intracellular immune receptors that perceive the presence of pathogen-derived virulence proteins (effectors) to induce immune responses. The 2 major types of plant NLRs that "sense" pathogen effectors differ in their N-terminal domains: these are Toll/interleukin-1 receptor resistance (TIR) domain-containing NLRs (TNLs) and coiled-coil (CC) domain-containing NLRs (CNLs). In many angiosperms, the RESISTANCE TO POWDERY MILDEW 8 (RPW8)-CC domain containing NLR (RNL) subclass of CNLs is encoded by 2 gene families, ACTIVATED DISEASE RESISTANCE 1 (ADR1) and N REQUIREMENT GENE 1 (NRG1), that act as "helper" NLRs during multiple sensor NLR-mediated immune responses. Despite their important role in sensor NLR-mediated immunity, knowledge of the specific, redundant, and synergistic functions of helper RNLs is limited. We demonstrate that the ADR1 and NRG1 families act in an unequally redundant manner in basal resistance, effector-triggered immunity (ETI) and regulation of defense gene expression. We define RNL redundancy in ETI conferred by some TNLs and in basal resistance against virulent pathogens. We demonstrate that, in Arabidopsis thaliana, the 2 RNL families contribute specific functions in ETI initiated by specific CNLs and TNLs. Time-resolved whole genome expression profiling revealed that RNLs and "classical" CNLs trigger similar transcriptome changes, suggesting that RNLs act like other CNLs to mediate ETI downstream of sensor NLR activation. Together, our genetic data confirm that RNLs contribute to basal resistance, are fully required for TNL signaling, and can also support defense activation during CNL-mediated ETI.


Asunto(s)
Arabidopsis/inmunología , Proteínas NLR/fisiología , Inmunidad de la Planta/genética , Receptores Inmunológicos/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Familia de Multigenes/genética , Familia de Multigenes/fisiología , Proteínas NLR/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente , Receptores Inmunológicos/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Transcriptoma
19.
Proc Natl Acad Sci U S A ; 117(31): 18832-18839, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32709746

RESUMEN

Plant and animal intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors detect pathogen-derived molecules and activate defense. Plant NLRs can be divided into several classes based upon their N-terminal signaling domains, including TIR (Toll-like, Interleukin-1 receptor, Resistance protein)- and CC (coiled-coil)-NLRs. Upon ligand detection, mammalian NAIP and NLRC4 NLRs oligomerize, forming an inflammasome that induces proximity of its N-terminal signaling domains. Recently, a plant CC-NLR was revealed to form an inflammasome-like hetero-oligomer. To further investigate plant NLR signaling mechanisms, we fused the N-terminal TIR domain of several plant NLRs to the N terminus of NLRC4. Inflammasome-dependent induced proximity of the TIR domain in planta initiated defense signaling. Thus, induced proximity of a plant TIR domain imposed by oligomerization of a mammalian inflammasome is sufficient to activate authentic plant defense. Ligand detection and inflammasome formation is maintained when the known components of the NLRC4 inflammasome is transferred across kingdoms, indicating that NLRC4 complex can robustly function without any additional mammalian proteins. Additionally, we found NADase activity of a plant TIR domain is necessary for plant defense activation, but NADase activity of a mammalian or a bacterial TIR is not sufficient to activate defense in plants.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Proteínas de Plantas , Proteínas Recombinantes de Fusión , Transducción de Señal , Animales , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Mamíferos , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/inmunología , Proteínas NLR/metabolismo , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología
20.
Plant J ; 107(5): 1490-1502, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34181787

RESUMEN

The oomycete Albugo candida causes white rust of Brassicaceae, including vegetable and oilseed crops, and wild relatives such as Arabidopsis thaliana. Novel White Rust Resistance (WRR) genes from Arabidopsis enable new insights into plant/parasite co-evolution. WRR4A from Arabidopsis accession Columbia (Col-0) provides resistance to many but not all white rust races, and encodes a nucleotide-binding, leucine-rich repeat immune receptor. Col-0 WRR4A resistance is broken by AcEx1, an isolate of A. candida. We identified an allele of WRR4A in Arabidopsis accession Øystese-0 (Oy-0) and other accessions that confers full resistance to AcEx1. WRR4AOy-0 carries a C-terminal extension required for recognition of AcEx1, but reduces recognition of several effectors recognized by the WRR4ACol-0 allele. WRR4AOy-0 confers full resistance to AcEx1 when expressed in the oilseed crop Camelina sativa.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Resistencia a la Enfermedad/genética , Variación Genética , Oomicetos/fisiología , Enfermedades de las Plantas/inmunología , Alelos , Secuencia de Aminoácidos , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Camellia/genética , Camellia/inmunología , Hojas de la Planta , Plantas Modificadas Genéticamente , Alineación de Secuencia , Nicotiana/genética , Nicotiana/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA