Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 621(7980): 857-867, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37730992

RESUMEN

Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans1,2, but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-CreERT2::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-CreERT2::CFTRL/L). By comparing these models with cystic fibrosis ferrets3,4, we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity-leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-CreERT2::CFTRL/L ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl- and HCO3-. Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets.


Asunto(s)
Fibrosis Quística , Modelos Animales de Enfermedad , Hurones , Pulmón , Transgenes , Animales , Humanos , Animales Modificados Genéticamente , Linaje de la Célula , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Hurones/genética , Hurones/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Pulmón/citología , Pulmón/metabolismo , Pulmón/patología , Tráquea/citología , Transgenes/genética
2.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L771-L782, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37039381

RESUMEN

Multiciliated cell loss is a hallmark of airway epithelial remodeling in chronic inflammatory airway diseases including cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease. It disrupts mucociliary clearance, which fuels disease progression. Effective clearance requires an optimal proportion of multiciliated and secretory cells. This is controlled by Notch signaling such that between two adjacent cells the one that activates Notch becomes a secretory cell and the one that avoids Notch activation becomes a multiciliated cell. Consequently, blocking Notch by a small molecule inhibitor of the γ-secretase enzyme that cleaves the Notch receptor for signal activation directs differentiation toward the multiciliated lineage. Thus, γ-secretase inhibitor (GSI) treatment may alleviate multiciliated cell loss in lung disease. Here, we demonstrate the therapeutic restoration of multiciliated cells by the GSI LY450139 (semagacestat). LY450139 increased multiciliated cell numbers in a dose-dependent manner in healthy primary human nasal epithelial cells (HNECs) during differentiation and in mature cultures, but not when applied during early epithelialization of progenitors. LY450139 did not impact stem cell proliferation. Basal and apical administration were equally effective. In healthy adult mice, LY450139 increased multiciliated cell numbers without detectible toxicity. LY450139 also increased multiciliated cells and decreased excess mucus secretory cells in CF HNECs and IL-13 remodeled healthy HNECs. LY450139 normalized multiciliated cell numbers in CF HNECs without interfering with the activity of CFTR modulator compounds. In summary, we demonstrate that GSI administration is a promising therapeutic to restore multiciliated cells and potentially improve epithelial function in a wide range of chronic lung diseases.NEW & NOTEWORTHY Our findings show that low-dose, short-term topical or systemic γ-secretase inhibitor treatment may lead to restoration of multiciliated cells without toxicity and potentially improve epithelial function in a wide range of chronic lung diseases.


Asunto(s)
Asma , Fibrosis Quística , Humanos , Ratones , Animales , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Epitelio/metabolismo , Células Epiteliales/metabolismo , Transducción de Señal/fisiología , Receptores Notch
3.
Am J Respir Cell Mol Biol ; 54(4): 469-81, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26334941

RESUMEN

Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel lead to viscous secretions from submucosal glands that cannot be properly hydrated and cleared by beating cilia in cystic fibrosis (CF) airways. The mechanisms by which CFTR, and the predominant epithelial sodium channel (ENaC), control the hydration and clearance of glandular secretions remain unclear. We used a proteomics approach to characterize the proteins contained in CF and non-CF submucosal gland fluid droplets and found that differentially regulated proteases (cathepsin S and H) and their antiprotease (cystatin C) influenced the equilibration of fluid on the airway surface and tracheal mucociliary clearance (MCC). Contrary to prevailing models of airway hydration and clearance, cystatin C, or raising the airway surface liquid (ASL) pH, inhibited cathepsin-dependent ENaC-mediated fluid absorption and raised the height of ASL, and yet decreased MCC velocity. Importantly, coupling of both CFTR and ENaC activities were required for effective MCC and for effective ASL height equilibration after volume challenge. Cystatin C-inhibitable cathepsins controlled initial phases of ENaC-mediated fluid absorption, whereas CFTR activity was required to prevent ASL dehydration. Interestingly, CF airway epithelia absorbed fluid more slowly owing to reduced cysteine protease activity in the ASL but became abnormally dehydrated with time. Our findings demonstrate that, after volume challenge, pH-dependent protease-mediated coupling of CFTR and ENaC activities are required for rapid fluid equilibration at the airway surface and for effective MCC. These findings provide new insights into how glandular fluid secretions may be equilibrated at the airway surface and how this process may be impaired in CF.


Asunto(s)
Bronquios/fisiopatología , Cistatina C/fisiología , Fibrosis Quística/fisiopatología , Proteoma , Tráquea/fisiopatología , Animales , Bronquios/metabolismo , Hurones , Células HEK293 , Humanos , Tráquea/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 307(1): L83-93, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24793168

RESUMEN

In many species submucosal glands are an important source of tracheal mucus, but the extent to which mucociliary clearance (MCC) depends on gland secretion is unknown. To explore this relationship, we measured basal and agonist-stimulated MCC velocities in ex vivo tracheas from adult ferrets and compared the velocities with previously measured rates of ferret glandular mucus secretion (Cho HJ, Joo NS, Wine JJ. Am J Physiol Lung Cell Mol Physiol 299: L124-L136, 2010). Stimulated MCC velocities (mm/min, means ± SE for 10- to 35-min period poststimulation) were as follows: 1 µM carbachol: 19.1 ± 3.3 > 10 µM phenylephrine: 15.3 ± 2.4 ≈ 10 µM isoproterenol: 15.0 ± 1.9 ≈ 10 µM forskolin: 14.6 ± 3.1 > 1 µM vasoactive intestinal peptide (VIP): 10.2 ± 2.2 >> basal (t15): 1.8 ± 0.3; n = 5-10 for each condition. Synergistic stimulation of MCC was observed between low concentrations of carbachol (100 nM) and isoproterenol (300 nM). Bumetanide inhibited carbachol-stimulated MCC by ~70% and abolished the increase in MCC stimulated by forskolin + VIP, whereas HCO3 (-)-free solutions did not significantly inhibit MCC to either intracellular Ca(2+) concentration or intracellular cAMP concentration ([cAMP]i)-elevating agonists. Stimulation and inhibition of MCC and gland secretion differed in several respects: most importantly, elevating [cAMP]i increased MCC much more effectively than expected from its effects on gland secretion, and bumetanide almost completely inhibited [cAMP]i-stimulated MCC while it had a smaller effect on gland secretion. We conclude that changes in glandular fluid secretion are complexly related to MCC and discuss possible reasons for this.


Asunto(s)
Glándulas Exocrinas/metabolismo , Transporte Iónico/fisiología , Depuración Mucociliar/efectos de los fármacos , Moco/metabolismo , Tráquea/metabolismo , Analgésicos no Narcóticos/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Broncodilatadores/farmacología , Bumetanida/farmacología , Calcio/metabolismo , Carbacol/farmacología , Carbonatos/metabolismo , Cloruros/metabolismo , Colforsina/farmacología , AMP Cíclico/antagonistas & inhibidores , AMP Cíclico/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Hurones , Isoproterenol/farmacología , Moco/efectos de los fármacos , Nitrobenzoatos/farmacología , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología
5.
bioRxiv ; 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37205513

RESUMEN

Duodenal bicarbonate secretion is critical to epithelial protection, nutrient digestion/absorption and is impaired in cystic fibrosis (CF). We examined if linaclotide, typically used to treat constipation, may also alter duodenal bicarbonate secretion. Bicarbonate secretion was measured in vivo and in vitro using mouse and human duodenum. Ion transporter localization was identified with confocal microscopy and de novo analysis of human duodenal single cell RNA sequencing (sc-RNAseq) was performed. Linaclotide increased bicarbonate secretion in mouse and human duodenum in the absence of CFTR expression or function. Linaclotide-stimulated bicarbonate secretion was eliminated by down-regulated in adenoma (DRA) inhibition, regardless of CFTR activity. Sc-RNAseq identified that 70% of villus cells expressed SLC26A3, but not CFTR, mRNA. Linaclotide increased apical membrane expression of DRA in non-CF and CF differentiated enteroids. These data provide insights into the action of linaclotide and suggest linaclotide may be a useful therapy for CF individuals with impaired bicarbonate secretion.

6.
PLoS One ; 17(3): e0265432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35312728

RESUMEN

The genetic disease cystic fibrosis (CF) results when mutations in the gene for the anion channel CFTR reduce CFTR's activity below a critical level. CFTR activity = N·PO·Î³ (number of channels x open probability x channel conductance). Small molecules are now available that partially restore CFTR function with dramatic improvements in health of CF subjects. Continued evaluation of these and other compounds in development will be aided by accurate assessments of CFTR function. However, measuring CFTR activity in vivo is challenging and estimates vary widely. The most accurate known measure of CFTR activity in vivo is the 'ß/M' ratio of sweat rates, which is produced by stimulation with a ß-adrenergic agonist cocktail referenced to the same individual's methacholine-stimulated sweat rate. The most meaningful metric of CFTR activity is to express it as a percent of normal function, so it is critical to establish ß/M carefully in a population of healthy control subjects. Here, we analyze ß/M from a sample of 50 healthy adults in which sweat rates to cholinergic and ß-adrenergic agonists were measured repeatedly (3 times) in multiple, (~50) identified sweat glands from each individual (giving ~20,000 measurements). The results show an approximately 7-fold range, 26-187% of the WT average set to 100%. These provide a benchmark against which other measures of CFTR activity can be compared. Factors contributing to ß/M variation in healthy controls are discussed.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Adulto , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Sudor , Glándulas Sudoríparas , Sudoración
7.
Am J Physiol Lung Cell Mol Physiol ; 300(3): L370-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21131402

RESUMEN

Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et al. J Clin Invest 120: 3161-3166, 2010). To further define features of SubP-mediated gland secretion, we optically measured secretion rates from individual adult porcine glands in isolated tracheal tissues in response to mucosal capsaicin and serosal SubP. Mucosal capsaicin (EC(50) = 19 µM) stimulated low rates of secretion that were partially inhibited by tetrodotoxin and by inhibitors for muscarinic, VIP, and SubP receptors, suggesting reflex stimulation of secretion by multiple transmitters. Secretion in response to mucosal capsaicin was inhibited by CFTR(inh)-172, but not by niflumic acid. Serosal SubP (EC(50) = 230 nM) stimulated 10-fold more secretion than mucosal capsaicin, with a V(max) similar to that of carbachol. Secretion rates peaked within 5 min and then declined to a lower sustained rate. SubP-stimulated secretion was inhibited 75% by bumetanide, 53% by removal of HCO(3)(-), and 85% by bumetanide + removal of HCO(3)(-); it was not inhibited by atropine but was inhibited by niflumic acid, clotrimazole, BAPTA-AM, nominally Ca(2+)-free bath solution, and the adenylate cyclase inhibitor MDL-12330A. Ratiometric measurements of fura 2 fluorescence in dissociated gland cells showed that SubP and carbachol increased intracellular Ca(2+) concentration by similar amounts. SubP produced rapid volume loss by serous and mucous cells, expansion of gland lumina, mucus flow, and exocytosis but little or no contraction of myoepithelial cells. These and prior results suggest that SubP stimulates pig gland secretion via CFTR- and Ca(2+)-activated Cl(-) channels.


Asunto(s)
Moco/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Sustancia P/farmacología , Tráquea/efectos de los fármacos , Tráquea/metabolismo , Animales , Aniones , Calcio/metabolismo , Capsaicina/farmacología , Carbacol/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fura-2/metabolismo , Humanos , Técnicas In Vitro , Microscopía de Interferencia , Mucosa Respiratoria/citología , Sus scrofa , Factores de Tiempo , Tráquea/citología , Fosfolipasas de Tipo C/metabolismo
8.
Sci Rep ; 11(1): 18828, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552115

RESUMEN

Mucus clearance, a primary innate defense mechanism of airways, is defective in patients with cystic fibrosis (CF) and CF animals. In previous work, the combination of a low dose of the cholinergic agonist, carbachol with forskolin or a ß adrenergic agonist, isoproterenol synergistically increased mucociliary clearance velocity (MCCV) in ferret tracheas. Importantly, the present study shows that synergistic MCCV can also be produced in CF ferrets, with increases ~ 55% of WT. Synergistic MCCV was also produced in pigs. The combined agonists increased MCCV by increasing surface fluid via multiple mechanisms: increased fluid secretion from submucosal glands, increased anion secretion across surface epithelia and decreased Na+ absorption. To avoid bronchoconstriction, the cAMP agonist was applied 30 min before carbachol. This approach to increasing mucus clearance warrants testing for safety and efficacy in humans as a potential therapeutic for muco-obstructive diseases.


Asunto(s)
Carbacol/uso terapéutico , Colforsina/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Isoproterenol/uso terapéutico , Depuración Mucociliar/efectos de los fármacos , Animales , Carbacol/administración & dosificación , Colforsina/administración & dosificación , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Quimioterapia Combinada , Hurones , Isoproterenol/administración & dosificación , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Porcinos
9.
Am J Physiol Lung Cell Mol Physiol ; 299(1): L124-36, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20435689

RESUMEN

Mucus secretion from individual tracheal glands in adult ferrets was studied with time-lapse optical imaging of mucus droplets under an oil layer. Density of functional glands (determined by responses to 1 muM carbachol) was 1.5 +/- 0.3 per mm(2) (n = 6). Secretion rates (in pl.min(-1).gland(-1)) were as follows: 4.1 +/- 0.7 basal (unstimulated; n = 27, 669 glands), 338 +/- 70 to 10 microM forskolin (n = 8, 90 glands), 234 +/- 13 to 1 microM VIP (n = 6, 57 glands), 183 +/- 92 to 10 microM isoproterenol (n = 3, 33 glands), 978 +/- 145 to 1 microM carbachol (n = 11, 131 glands), and 1,348 +/- 325 to 10 muM phenylephrine (n = 7, 74 glands). The potency (EC(50), in microM) and efficacy (V(max), in pl x min(-1) x gland(-1)) were 7.6 (EC(50)) and 338 +/- 16 (V(max)) to forskolin, 1.0 (EC(50)) and 479 +/- 19 (V(max)) to VIP, 0.6 (EC(50)) and 1,817 +/- 268 (V(max)) to carbachol, and 3.7 (EC(50)) and 1,801 +/- 95 (V(max)) to phenylephrine. Although carbachol and phenylephrine were equally effective secretagogues, only carbachol caused contractions of the trachealis muscle. Synergy was demonstrated between 300 nM isoproterenol and 100 nM carbachol, which, when combined, produced a secretion rate almost fourfold greater than predicted from their additive effect. The dependence of fluid secretion on Cl(-) and HCO(3)(-) varied depending on the mode of stimulation. Secretion stimulated by VIP or forskolin was reduced by approximately 60% by blocking either anion, while carbachol-stimulated secretion was blocked 68% by bumetanide and only 32% by HEPES replacement of HCO(3)(-). These results provide parametric data for comparison with fluid secretion from glands in ferrets lacking CFTR.


Asunto(s)
Glándulas Exocrinas/metabolismo , Hurones , Moco/metabolismo , Tráquea , Animales , Aniones/metabolismo , Broncodilatadores/farmacología , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Colforsina/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Sinergismo Farmacológico , Glándulas Exocrinas/efectos de los fármacos , Humanos , Isoproterenol/farmacología , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Fenilefrina/farmacología , Ovinos , Porcinos , Tráquea/anatomía & histología , Tráquea/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Vasoconstrictores/farmacología
10.
J Clin Invest ; 117(10): 3118-27, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17853942

RESUMEN

Cystic fibrosis (CF) is caused by dysfunction of the CF transmembrane conductance regulator (CFTR), an anion channel whose dysfunction leads to chronic bacterial and fungal airway infections via a pathophysiological cascade that is incompletely understood. Airway glands, which produce most airway mucus, do so in response to both acetylcholine (ACh) and vasoactive intestinal peptide (VIP). CF glands fail to secrete mucus in response to VIP, but do so in response to ACh. Because vagal cholinergic pathways still elicit strong gland mucus secretion in CF subjects, it is unclear whether VIP-stimulated, CFTR-dependent gland secretion participates in innate defense. It was recently hypothesized that airway intrinsic neurons, which express abundant VIP and ACh, are normally active and stimulate low-level gland mucus secretion that is a component of innate mucosal defenses. Here we show that low levels of VIP and ACh produced significant mucus secretion in human glands via strong synergistic interactions; synergy was lost in glands of CF patients. VIP/ACh synergy also existed in pig glands, where it was CFTR dependent, mediated by both Cl(-) and HCO(3) (-), and clotrimazole sensitive. Loss of "housekeeping" gland mucus secretion in CF, in combination with demonstrated defects in surface epithelia, may play a role in the vulnerability of CF airways to bacterial infections.


Asunto(s)
Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Fibrosis Quística/metabolismo , Glándulas Exocrinas/metabolismo , Moco/metabolismo , Sistema Respiratorio/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Acetilcolina/metabolismo , Animales , AMP Cíclico/metabolismo , Fibrosis Quística/etiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Sinergismo Farmacológico , Glándulas Exocrinas/efectos de los fármacos , Humanos , Porcinos , Péptido Intestinal Vasoactivo/metabolismo
11.
J Cyst Fibros ; 17(2S): S35-S39, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28951068

RESUMEN

Normal airways below the carina maintain an essentially sterile environment via a multi-pronged innate defence system that includes mucus clearance via mucociliary clearance and cough, multiple antimicrobials and cellular components including macrophages and neutrophils. In cystic fibrosis (CF), loss of CFTR function compromises these defences, and with present standard of care virtually all people with CF eventually develop mucus accumulation, plugging and chronic infections. This review focuses on how mucus is affected by CFTR loss.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística , Depuración Mucociliar , Fibrosis Quística/metabolismo , Fibrosis Quística/fisiopatología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos
12.
PLoS One ; 12(12): e0189894, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29281691

RESUMEN

BACKGROUND: Airway mucociliary clearance (MCC) is an important defense mechanism against pulmonary infections and is compromised in cystic fibrosis (CF). Cl- and HCO3- epithelial transport are integral to MCC. During pulmonary infections prostaglandin E2 (PGE2) production is abundant. AIM: To determine the effect of PGE2 on airway Cl- and HCO3- secretion and MCC in normal and CF airways. METHODS: We examined PGE2 stimulated MCC, Cl- and HCO3- secretion using ferret trachea, human bronchial epithelial cell cultures (CFBE41o- with wildtype CFTR (CFBE41 WT) or homozygous F508del CFTR (CFBE41 CF) and human normal bronchial submucosal gland cell line (Calu-3) in Ussing chambers with or without pH-stat. RESULTS: PGE2 stimulated MCC in a dose-dependent manner and was partially impaired by CFTRinh-172. PGE2-stimulated Cl- current in ferret trachea was partially inhibited by CFTRinh-172, with niflumic acid eliminating the residual current. CFBE41 WT cell monolayers produced a robust Cl- and HCO3- secretory response to PGE2, both of which were completely inhibited by CFTRinh-172. CFBE41 CF cells exhibited no response to PGE2. In Calu-3 cells, PGE2 stimulated Cl- and HCO3- secretion. Cl- secretion was partially inhibited by CFTRinh-172, with additional inhibition by niflumic acid. HCO3- secretion was completely inhibited by CFTRinh-172. CONCLUSIONS: PGE2 stimulates bronchotracheal MCC and this response is decreased in CF. In CF airway, PGE2-stimulated Cl- and HCO3- conductance is impaired and may contribute to decreased MCC. There remains a CFTR-independent Cl- current in submucosal glands, which if exploited, could represent a means of improving airway Cl- secretion and MCC in CF.


Asunto(s)
Bicarbonatos/metabolismo , Bronquios/efectos de los fármacos , Cloruros/metabolismo , Fibrosis Quística/metabolismo , Dinoprostona/farmacología , Tráquea/efectos de los fármacos , Animales , Bronquios/metabolismo , Bronquios/patología , Células Cultivadas , Humanos , Técnicas In Vitro , Tráquea/metabolismo
13.
Sci Rep ; 6: 36806, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27830759

RESUMEN

Mucociliary clearance (MCC) is a critical host innate defense mechanism in airways, and it is impaired in cystic fibrosis (CF) and other obstructive lung diseases. Epithelial fluid secretion and absorption modify MCC velocity (MCCV). We tested the hypotheses that inhibiting fluid absorption accelerates MCCV, whereas inhibiting fluid secretion decelerates it. In airways, ENaC is mainly responsible for fluid absorption, while anion channels, including CFTR and Ca2+-activated chloride channels mediate anion/fluid secretion. MCCV was increased by the cAMP-elevating agonists, forskolin or isoproterenol (10 µM) and by the Ca2+-elevating agonist, carbachol (0.3 µM). The CFTR-selective inhibitor, CFTRinh-172, modestly reduced MCCV-increases induced by forskolin or isoproterenol but not increases induced by carbachol. The ENaC inhibitor benzamil increased basal MCCV as well as MCCV increases produced by forskolin or carbachol. MCC velocity was most dramatically accelerated by the synergistic combination of forskolin and carbachol, which produced near-maximal clearance rates regardless of prior treatment with CFTR or ENaC inhibitors. In CF airways, where CFTR-mediated secretion (and possibly synergistic MCC) is lost, ENaC inhibition via exogenous agents may provide therapeutic benefit, as has long been proposed.


Asunto(s)
Colforsina/farmacología , Bloqueadores del Canal de Sodio Epitelial/farmacología , Isoproterenol/farmacología , Depuración Mucociliar/efectos de los fármacos , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Carbacol/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Sinergismo Farmacológico , Canales Epiteliales de Sodio/metabolismo , Hurones , Transporte Iónico , Regulación hacia Arriba
14.
Sci Rep ; 6: 20735, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26846701

RESUMEN

In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20-70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways.


Asunto(s)
Atropina/metabolismo , Carbacol/farmacología , Canales Epiteliales de Sodio/metabolismo , Moco/metabolismo , Tráquea/efectos de los fármacos , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Células Cultivadas , Hurones , Humanos , Conejos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Ovinos , Porcinos , Tráquea/citología , Tráquea/metabolismo
15.
Am J Rhinol Allergy ; 29(5): 334-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26358343

RESUMEN

BACKGROUND: A majority of patients with cystic fibrosis (CF) have chronic rhinosinusitis (CRS) and/or nasal polyps, both of which may be secondary to reduced fluid secretion from nasal submucosal glands. OBJECTIVE: To determine whether decreased fluid secretion from nasal submucosal glands also occurs in patients without CF and with CRS. METHODS: Inferior turbinates of the nasal cavity were harvested from controls, subjects with CRS, and subjects with CF (n = 5-7 per group). The secretion rates of the nasal submucosal glands of the three groups in response to carbachol and forskolin were measured by using time lapse digital imaging of mucus bubbles from single glands as they formed on the mucosal surface under oil. RESULTS: Carbachol-stimulated secretion rates were the following: controls, 1670 ± 381 pl·min(-1)·gland(-1); CRS, 965 ± 440 pl·min(-1)·gland(-1); and CF, 933 ± 588 pl·min(-1)·gland(-1) (p = 0.23, Kruskal-Wallis test). Forskolin-stimulated secretion rates were the following: controls, 229 ± 14 pl·min(-1)·gland(-1); CRS, 154 ± 48 pl·min(-1)·gland(-1); and CF, 22 ± 15 pl·min(-1)·gland(-1) (p = 0.008, Kruskal-Wallis test). The ratio of the average secretion rate induced by forskolin to that induced by carbachol was 13.7% in the controls, and 15.9% in CRS and 2.3% in CF groups. CONCLUSION: The only significant difference in this small study was decreased forskolin-stimulated secretion in subjects with CF relative to the other subjects. However, there was a trend toward reduced carbachol-stimulated secretion rates in subjects with CRS and with and without CF relative to controls. Additional studies are needed to determine if nasal submucosal gland hyposecretion occurs in CRS either as a contributor to or as a consequence of CRS pathogenesis.


Asunto(s)
Fibrosis Quística/metabolismo , Glándulas Exocrinas/metabolismo , Moco/metabolismo , Mucosa Nasal/metabolismo , Rinitis/metabolismo , Sinusitis/metabolismo , Adulto , Enfermedad Crónica , Fibrosis Quística/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mucosa Nasal/patología , Rinitis/patología , Sinusitis/patología
16.
PLoS One ; 10(2): e0116756, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25706550

RESUMEN

Airway submucosal glands contribute to innate immunity and protect the lungs by secreting mucus, which is required for mucociliary clearance and which also contains antimicrobial, anti-inflammatory, anti-proteolytic and anti-oxidant proteins. We stimulated glands in tracheal trimmings from three lung donors and collected droplets of uncontaminated mucus as they formed at the gland orifices under an oil layer. We analyzed the mucus using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis identified 5486 peptides and 441 proteins from across the 3 samples (269-319 proteins per subject). We focused on 269 proteins common to at least 2 0f 3 subjects, of which 102 (38%) had protective or innate immunity functions. While many of these have long been known to play such roles, for many others their cellular protective functions have only recently been appreciated in addition to their well-studied biologic functions (e.g. annexins, apolipoproteins, gelsolin, hemoglobin, histones, keratins, and lumican). A minority of the identified proteins are known to be secreted via conventional exocytosis, suggesting that glandular secretion occurs via multiple mechanisms. Two of the observed protective proteins, major vault protein and prohibitin, have not been observed in fluid from human epithelial cultures or in fluid from nasal or bronchoalveolar lavage. Further proteomic analysis of pure gland mucus may help clarify how healthy airways maintain a sterile environment.


Asunto(s)
Moco/metabolismo , Mucosa Respiratoria/metabolismo , Sistema Respiratorio/metabolismo , Humanos , Depuración Mucociliar , Proteómica
18.
PLoS One ; 8(10): e77114, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204751

RESUMEN

To assess CFTR function in vivo, we developed a bioassay that monitors and compares CFTR-dependent and CFTR-independent sweat secretion in parallel for multiple (~50) individual, identified glands in each subject. Sweating was stimulated by intradermally injected agonists and quantified by optically measuring spherical sweat bubbles in an oil-layer that contained dispersed, water soluble dye particles that partitioned into the sweat bubbles, making them highly visible. CFTR-independent secretion (M-sweat) was stimulated with methacholine, which binds to muscarinic receptors and elevates cytosolic calcium. CFTR-dependent secretion (C-sweat) was stimulated with a ß-adrenergic cocktail that elevates cytosolic cAMP while blocking muscarinic receptors. A C-sweat/M-sweat ratio was determined on a gland-by-gland basis to compensate for differences unrelated to CFTR function, such as gland size. The average ratio provides an approximately linear readout of CFTR function: the heterozygote ratio is ~0.5 the control ratio and for CF subjects the ratio is zero. During assay development, we measured C/M ratios in 6 healthy controls, 4 CF heterozygotes, 18 CF subjects and 4 subjects with 'CFTR-related' conditions. The assay discriminated all groups clearly. It also revealed consistent differences in the C/M ratio among subjects within groups. We hypothesize that these differences reflect, at least in part, levels of CFTR expression, which are known to vary widely. When C-sweat rates become very low the C/M ratio also tended to decrease; we hypothesize that this nonlinearity reflects ductal fluid absorption. We also discovered that M-sweating potentiates the subsequent C-sweat response. We then used potentiation as a surrogate for drugs that can increase CFTR-dependent secretion. This bioassay provides an additional method for assessing CFTR function in vivo, and is well suited for within-subject tests of systemic, CFTR-directed therapeutics.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Glándulas Sudoríparas/metabolismo , Sudor/metabolismo , Agonistas Adrenérgicos beta/administración & dosificación , Adulto , Aminofilina/administración & dosificación , Atropina/administración & dosificación , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Relación Dosis-Respuesta a Droga , Femenino , Heterocigoto , Humanos , Inyecciones Intradérmicas , Isoproterenol/administración & dosificación , Masculino , Cloruro de Metacolina/administración & dosificación , Agonistas Muscarínicos , Antagonistas Muscarínicos/administración & dosificación , Mutación , Antagonistas de Receptores Purinérgicos P1/administración & dosificación , Sudor/efectos de los fármacos , Glándulas Sudoríparas/efectos de los fármacos , Factores de Tiempo
19.
PLoS One ; 6(8): e24424, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21935358

RESUMEN

BACKGROUND: Cystic fibrosis (CF), caused by reduced CFTR function, includes severe sinonasal disease which may predispose to lung disease. Newly developed CF pigs provide models to study the onset of CF pathophysiology. We asked if glands from pig nasal turbinates have secretory responses similar to those of tracheal glands and if CF nasal glands show reduced fluid secretion. METHODOLOGY/PRINCIPAL FINDINGS: Unexpectedly, we found that nasal glands differed from tracheal glands in five ways, being smaller, more numerous (density per airway surface area), more sensitive to carbachol, more sensitive to forskolin, and nonresponsive to Substance P (a potent agonist for pig tracheal glands). Nasal gland fluid secretion from newborn piglets (12 CF and 12 controls) in response to agonists was measured using digital imaging of mucus bubbles formed under oil. Secretion rates were significantly reduced in all conditions tested. Fluid secretory rates (Controls vs. CF, in pl/min/gland) were as follows: 3 µM forskolin: 9.2±2.2 vs. 0.6±0.3; 1 µM carbachol: 143.5±35.5 vs. 52.2±10.3; 3 µM forskolin + 0.1 µM carbachol: 25.8±5.8 vs. CF 4.5±0.9. We also compared CF(ΔF508/ΔF508) with CFTR(-/-) piglets and found significantly greater forskolin-stimulated secretion rates in the ΔF508 vs. the null piglets (1.4±0.8, n = 4 vs. 0.2±0.1, n = 7). An unexpected age effect was also discovered: the ratio of secretion to 3 µM forskolin vs. 1 µM carbachol was ∼4 times greater in adult than in neonatal nasal glands. CONCLUSIONS/SIGNIFICANCE: These findings reveal differences between nasal and tracheal glands, show defective fluid secretion in nasal glands of CF pigs, reveal some spared function in the ΔF508 vs. null piglets, and show unexpected age-dependent differences. Reduced nasal gland fluid secretion may predispose to sinonasal and lung infections.


Asunto(s)
Líquidos Corporales/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Glándulas Exocrinas/metabolismo , Cornetes Nasales/patología , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Animales Recién Nacidos , Líquidos Corporales/efectos de los fármacos , Carbacol/farmacología , Colforsina/farmacología , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Sinergismo Farmacológico , Glándulas Exocrinas/efectos de los fármacos , Glándulas Exocrinas/patología , Mutación/genética , Tamaño de los Órganos/efectos de los fármacos , Sustancia P/farmacología , Sus scrofa/crecimiento & desarrollo , Tráquea/efectos de los fármacos , Tráquea/patología , Cornetes Nasales/efectos de los fármacos
20.
Methods Mol Biol ; 742: 93-112, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21547728

RESUMEN

Human airways are kept sterile by a mucosal innate defense system that includes mucus secretion. Mucus is secreted in healthy upper airways primarily by submucosal glands and consists of defense molecules mixed with mucins, electrolytes, and water and is also a major component of sputum. Mucus traps pathogens and mechanically removes them via mucociliary clearance while inhibiting their growth via molecular (e.g., lysozyme) and cellular (e.g., neutrophils, macrophages) defenses. Fluid secretion rates of single glands in response to various mediators can be measured by trapping the primary gland mucus secretions in an oil layer, where they form spherical bubbles that can be optically measured at any desired interval to provide detailed temporal analysis of secretion rates. The composition and properties of the mucus (e.g., solids, viscosity, pH) can also be determined. These methods have now been applied to mice, ferrets, cats, pigs, sheep, and humans, with a main goal of comparing gland secretion in control and CFTR-deficient humans and animals.


Asunto(s)
Glándulas Exocrinas/metabolismo , Imagen Molecular/métodos , Depuración Mucociliar , Moco , Mucosa Respiratoria/metabolismo , Animales , Transporte Biológico , Líquidos Corporales/metabolismo , Gatos , Fibrosis Quística/metabolismo , Fibrosis Quística/fisiopatología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Hurones , Humanos , Ratones , Microscopía , Membrana Mucosa/metabolismo , Moco/química , Moco/metabolismo , Mucosa Respiratoria/citología , Ovinos , Especificidad de la Especie , Esputo/metabolismo , Porcinos , Tráquea/citología , Tráquea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA