Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(6): e0052424, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38757972

RESUMEN

Ebola virus glycoprotein (EBOV GP) is one of the most heavily O-glycosylated viral glycoproteins, yet we still lack a fundamental understanding of the structure of its large O-glycosylated mucin-like domain and to what degree the host O-glycosylation capacity influences EBOV replication. Using tandem mass spectrometry, we identified 47 O-glycosites on EBOV GP and found similar glycosylation signatures on virus-like particle- and cell lysate-derived GP. Furthermore, we performed quantitative differential O-glycoproteomics on proteins produced in wild-type HEK293 cells and cell lines ablated for the three key initiators of O-linked glycosylation, GalNAc-T1, -T2, and -T3. The data show that 12 out of the 47 O-glycosylated sites were regulated, predominantly by GalNAc-T1. Using the glycoengineered cell lines for authentic EBOV propagation, we demonstrate the importance of O-linked glycan initiation and elongation for the production of viral particles and the titers of progeny virus. The mapped O-glycan positions and structures allowed to generate molecular dynamics simulations probing the largely unknown spatial arrangements of the mucin-like domain. The data highlight targeting GALNT1 or C1GALT1C1 as a possible way to modulate O-glycan density on EBOV GP for novel vaccine designs and tailored intervention approaches.IMPORTANCEEbola virus glycoprotein acquires its extensive glycan shield in the host cell, where it is decorated with N-linked glycans and mucin-type O-linked glycans. The latter is initiated by a family of polypeptide GalNAc-transferases that have different preferences for optimal peptide substrates resulting in a spectrum of both very selective and redundant substrates for each isoform. In this work, we map the exact locations of O-glycans on Ebola virus glycoprotein and identify subsets of sites preferentially initiated by one of the three key isoforms of GalNAc-Ts, demonstrating that each enzyme contributes to the glycan shield integrity. We further show that altering host O-glycosylation capacity has detrimental effects on Ebola virus replication, with both isoform-specific initiation and elongation playing a role. The combined structural and functional data highlight glycoengineered cell lines as useful tools for investigating molecular mechanisms imposed by specific glycans and for steering the immune responses in future vaccine designs.


Asunto(s)
Ebolavirus , Polisacáridos , Replicación Viral , Ebolavirus/fisiología , Ebolavirus/metabolismo , Humanos , Células HEK293 , Glicosilación , Polisacáridos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Glicoproteínas/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
2.
Database (Oxford) ; 20242024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137905

RESUMEN

Dynamic changes in protein glycosylation impact human health and disease progression. However, current resources that capture disease and phenotype information focus primarily on the macromolecules within the central dogma of molecular biology (DNA, RNA, proteins). To gain a better understanding of organisms, there is a need to capture the functional impact of glycans and glycosylation on biological processes. A workshop titled "Functional impact of glycans and their curation" was held in conjunction with the 16th Annual International Biocuration Conference to discuss ongoing worldwide activities related to glycan function curation. This workshop brought together subject matter experts, tool developers, and biocurators from over 20 projects and bioinformatics resources. Participants discussed four key topics for each of their resources: (i) how they curate glycan function-related data from publications and other sources, (ii) what type of data they would like to acquire, (iii) what data they currently have, and (iv) what standards they use. Their answers contributed input that provided a comprehensive overview of state-of-the-art glycan function curation and annotations. This report summarizes the outcome of discussions, including potential solutions and areas where curators, data wranglers, and text mining experts can collaborate to address current gaps in glycan and glycosylation annotations, leveraging each other's work to improve their respective resources and encourage impactful data sharing among resources. Database URL: https://wiki.glygen.org/Glycan_Function_Workshop_2023.


Asunto(s)
Curaduría de Datos , Polisacáridos , Polisacáridos/metabolismo , Humanos , Curaduría de Datos/métodos , Glicosilación , Italia , Biocuración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA