Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Transl Med ; 16(1): 160, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884186

RESUMEN

BACKGROUND: Mutations in leucine rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). Mitochondrial and autophagic dysfunction has been described as etiologic factors in different experimental models of PD. We aimed to study the role of mitochondria and autophagy in LRRK2 G2019S -mutation, and its relationship with the presence of PD-symptoms. METHODS: Fibroblasts from six non-manifesting LRRK2 G2019S -carriers (NM-LRRK2 G2019S ) and seven patients with LRRK2 G2019S -associated PD (PD-LRRK2 G2019S ) were compared to eight healthy controls (C). An exhaustive assessment of mitochondrial performance and autophagy was performed after 24-h exposure to standard (glucose) or mitochondrial-challenging environment (galactose), where mitochondrial and autophagy impairment may be heightened. RESULTS: A similar mitochondrial phenotype of NM-LRRK2 G2019S and controls, except for an early mitochondrial depolarization (54.14% increased, p = 0.04), was shown in glucose. In response to galactose, mitochondrial dynamics of NM-LRRK2 G2019S improved (- 17.54% circularity, p = 0.002 and + 42.53% form factor, p = 0.051), probably to maintain ATP levels over controls. A compromised bioenergetic function was suggested in PD-LRRK2 G2019S when compared to controls in glucose media. An inefficient response to galactose and worsened mitochondrial dynamics (- 37.7% mitochondrial elongation, p = 0.053) was shown, leading to increased oxidative stress. Autophagy initiation (SQTSM/P62) was upregulated in NM-LRRK2 G2019S when compared to controls (glucose + 118.4%, p = 0.014; galactose + 114.44%, p = 0.009,) and autophagosome formation increased in glucose media. Despite of elevated SQSTM1/P62 levels of PD-NM G2019S when compared to controls (glucose + 226.14%, p = 0.04; galactose + 78.5%, p = 0.02), autophagosome formation was deficient in PD-LRRK2 G2019S when compared to NM-LRRK2 G2019S (- 71.26%, p = 0.022). CONCLUSIONS: Enhanced mitochondrial performance of NM-LRRK2 G2019S in mitochondrial-challenging conditions and upregulation of autophagy suggests that an exhaustion of mitochondrial bioenergetic and autophagic reserve, may contribute to the development of PD in LRRK2 G2019S mutation carriers.


Asunto(s)
Autofagia , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mitocondrias/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Adulto , Anciano , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Dinámicas Mitocondriales , Mutación/genética , Enfermedad de Parkinson/epidemiología , Fenotipo
2.
J Cell Mol Med ; 21(2): 402-409, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27758070

RESUMEN

To characterize mitochondrial/apoptotic parameters in chronically human immunodeficiency virus (HIV-1)-infected promonocytic and lymphoid cells which could be further used as therapeutic targets to test pro-mitochondrial or anti-apoptotic strategies as in vitro cell platforms to deal with HIV-infection. Mitochondrial/apoptotic parameters of U1 promonocytic and ACH2 lymphoid cell lines were compared to those of their uninfected U937 and CEM counterparts. Mitochondrial DNA (mtDNA) was quantified by rt-PCR while mitochondrial complex IV (CIV) function was measured by spectrophotometry. Mitochondrial-nuclear encoded subunits II-IV of cytochrome-c-oxidase (COXII-COXIV), respectively, as well as mitochondrial apoptotic events [voltage-dependent-anion-channel-1(VDAC-1)-content and caspase-9 levels] were quantified by western blot, with mitochondrial mass being assessed by spectrophotometry (citrate synthase) and flow cytometry (mitotracker green assay). Mitochondrial membrane potential (JC1-assay) and advanced apoptotic/necrotic events (AnexinV/propidium iodide) were measured by flow cytometry. Significant mtDNA depletion spanning 57.67% (P < 0.01) was found in the U1 promonocytic cells further reflected by a significant 77.43% decrease of mitochondrial CIV activity (P < 0.01). These changes were not significant for the ACH2 lymphoid cell line. COXII and COXIV subunits as well as VDAC-1 and caspase-9 content were sharply decreased in both chronic HIV-1-infected promonocytic and lymphoid cell lines (<0.005 in most cases). In addition, U1 and ACH2 cells showed a trend (moderate in case of ACH2), albeit not significant, to lower levels of depolarized mitochondrial membranes. The present in vitro lymphoid and especially promonocytic HIV model show marked mitochondrial lesion but apoptotic resistance phenotype that has been only partially demonstrated in patients. This model may provide a platform for the characterization of HIV-chronicity, to test novel therapeutic options or to study HIV reservoirs.


Asunto(s)
Apoptosis , VIH-1/fisiología , Linfocitos/virología , Mitocondrias/metabolismo , Modelos Biológicos , Monocitos/virología , Línea Celular , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Linfocitos/metabolismo , Monocitos/metabolismo , Subunidades de Proteína/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
3.
J Clin Med ; 10(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34441767

RESUMEN

Pathogenic variants in the mitochondrial tyrosyl-tRNA synthetase gene (YARS2) were associated with myopathy, lactic acidosis, and sideroblastic anemia (MLASA). However, patients can present mitochondrial myopathy, with exercise intolerance and muscle weakness, leading from mild to lethal phenotypes. Genes implicated in mtDNA replication were studied by Next Generation Sequencing (NGS) and whole exome sequence with the TruSeq Rapid Exome kit (Illumina, San Diego, CA, USA). Mitochondrial protein translation was studied following the Sasarman and Shoubridge protocol and oxygen consumption rates with Agilent Seahorse XF24 Analyzer Mitostress Test, (Agilent, Santa Clara, CA, USA). We report two siblings with two novel compound heterozygous pathogenic variants in YARS2 gene: a single nucleotide deletion in exon 1, c.314delG (p.(Gly105Alafs*4)), which creates a premature stop codon in the amino acid 109, and a single nucleotide change in exon 5 c.1391T>C (p.(Ile464Thr)), that cause a missense variant in amino acid 464. We demonstrate the pathogenicity of these new variants associated with reduced YARS2 mRNA transcript, reduced mitochondrial protein translation and dysfunctional organelle function. These pathogenic variants are responsible for late onset MLASA, herein accompanied by pancreatic insufficiency, observed in both brothers, clinically considered as Pearson's syndrome. Molecular study of YARS2 gene should be considered in patients presenting Pearson's syndrome characteristics and MLASA related phenotypes.

4.
Antioxidants (Basel) ; 9(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143119

RESUMEN

Idiopathic Parkinson's disease (iPD) and type 2 diabetes mellitus (T2DM) are chronic, multisystemic, and degenerative diseases associated with aging, with eventual epidemiological co-morbidity and overlap in molecular basis. This study aims to explore if metabolic and mitochondrial alterations underlie the previously reported epidemiologic and clinical co-morbidity from a molecular level. To evaluate the adaptation of iPD to a simulated pre-diabetogenic state, we exposed primary cultured fibroblasts from iPD patients and controls to standard (5 mM) and high (25 mM) glucose concentrations to further characterize metabolic and mitochondrial resilience. iPD fibroblasts showed increased organic and amino acid levels related to mitochondrial metabolism with respect to controls, and these differences were enhanced in high glucose conditions (citric, suberic, and sebacic acids levels increased, as well as alanine, glutamate, aspartate, arginine, and ornithine amino acids; p-values between 0.001 and 0.05). The accumulation of metabolites in iPD fibroblasts was associated with (and probably due to) the concomitant mitochondrial dysfunction observed at enzymatic, oxidative, respiratory, and morphologic level. Metabolic and mitochondrial plasticity of controls was not observed in iPD fibroblasts, which were unable to adapt to different glucose conditions. Impaired metabolism and mitochondrial activity in iPD may limit energy supply for cell survival. Moreover, reduced capacity to adapt to disrupted glucose balance characteristic of T2DM may underlay the co-morbidity between both diseases. Conclusions: Fibroblasts from iPD patients showed mitochondrial impairment, resulting in the accumulation of organic and amino acids related to mitochondrial metabolism, especially when exposed to high glucose. Mitochondrial and metabolic defects down warding cell plasticity to adapt to changing glucose bioavailability may explain the comorbidity between iPD and T2DM.

5.
Front Neurosci ; 13: 894, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551675

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide affecting 2-3% of the population over 65 years. This prevalence is expected to rise as life expectancy increases and diagnostic and therapeutic protocols improve. PD encompasses a multitude of clinical, genetic, and molecular forms of the disease. Even though the mechanistic of the events leading to neurodegeneration remain largely unknown, some molecular hallmarks have been repeatedly reported in most patients and models of the disease. Neuroinflammation, protein misfolding, disrupted endoplasmic reticulum-mitochondria crosstalk, mitochondrial dysfunction and consequent bioenergetic failure, oxidative stress and autophagy deregulation, are amongst the most commonly described. Supporting these findings, numerous familial forms of PD are caused by mutations in genes that are crucial for mitochondrial and autophagy proper functioning. For instance, late and early onset PD associated to mutations in Leucine-rich repeat kinase 2 (LRRK2) and Parkin (PRKN) genes, responsible for the most frequent dominant and recessive inherited forms of PD, respectively, have emerged as promising examples of disease due to their established role in commanding bioenergetic and autophagic balance. Concomitantly, the development of animal and cell models to investigate the etiology of the disease, potential biomarkers and therapeutic approaches are being explored. One of the emerging approaches in this context is the use of patient's derived cells models, such as skin-derived fibroblasts that preserve the genetic background and some environmental cues of the patients. An increasing number of reports in these PD cell models postulate that deficient mitochondrial function and impaired autophagic flux may be determinant in PD accelerated nigral cell death in terms of limitation of cell energy supply and accumulation of obsolete and/or unfolded proteins or dysfunctional organelles. The reliance of neurons on mitochondrial oxidative metabolism and their post-mitotic nature, may explain their increased vulnerability to undergo degeneration upon mitochondrial challenges or autophagic insults. In this scenario, proper mitochondrial function and turnover through mitophagy, are gaining in strength as protective targets to prevent neurodegeneration, together with the use of patient-derived fibroblasts to further explore these events. These findings point out the presence of molecular damage beyond the central nervous system (CNS) and proffer patient-derived cell platforms to the clinical and scientific community, which enable the study of disease etiopathogenesis and therapeutic approaches focused on modifying the natural history of PD through, among others, the enhancement of mitochondrial function and autophagy.

6.
Aging (Albany NY) ; 11(22): 10338-10355, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31751314

RESUMEN

Glucocerebrosidase (GBA) mutations are the most important genetic risk factor for the development of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase). Loss-of-GCase activity in cellular models has implicated lysosomal and mitochondrial dysfunction in PD disease pathogenesis, although the exact mechanisms remain unclear. We hypothesize that GBA mutations impair mitochondria quality control in a neurosphere model.We have characterized mitochondrial content, mitochondrial function and macroautophagy flux in 3D-neurosphere-model derived from neural crest stem cells containing heterozygous and homozygous N370SGBA mutations, under carbonyl cyanide-m-chlorophenyl-hydrazine (CCCP)- induced mitophagy.Our findings on mitochondrial markers and ATP levels indicate that mitochondrial accumulation occurs in mutant N370SGBA neurospheres under basal conditions, and clearance of depolarised mitochondria is impaired following CCCP-treatment. A significant increase in TFEB-mRNA levels, the master regulator of lysosomal and autophagy genes, may explain an unchanged macroautophagy flux in N370SGBA neurospheres. PGC1α-mRNA levels were also significantly increased following CCCP-treatment in heterozygote, but not homozygote neurospheres, and might contribute to the increased mitochondrial content seen in cells with this genotype, probably as a compensatory mechanism that is absent in homozygous lines.Mitochondrial impairment occurs early in the development of GCase-deficient neurons. Furthermore, impaired turnover of depolarised mitochondria is associated with early mitochondrial dysfunction.In summary, the presence of GBA mutation may be associated with higher levels of mitochondrial content in homozygous lines and lower clearance of damaged mitochondria in our neurosphere model.


Asunto(s)
Glucosilceramidasa/genética , Mitocondrias/patología , Mitofagia/genética , Células-Madre Neurales/patología , Humanos , Mitocondrias/genética , Mutación , Cresta Neural
7.
Aging (Albany NY) ; 11(11): 3750-3767, 2019 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-31180333

RESUMEN

PRKN encodes an E3-ubiquitin-ligase involved in multiple cell processes including mitochondrial homeostasis and autophagy. Previous studies reported alterations of mitochondrial function in fibroblasts from patients with PRKN mutation-associated Parkinson's disease (PRKN-PD) but have been only conducted in glycolytic conditions, potentially masking mitochondrial alterations. Additionally, autophagy flux studies in this cell model are missing.We analyzed mitochondrial function and autophagy in PRKN-PD skin-fibroblasts (n=7) and controls (n=13) in standard (glucose) and mitochondrial-challenging (galactose) conditions.In glucose, PRKN-PD fibroblasts showed preserved mitochondrial bioenergetics with trends to abnormally enhanced mitochondrial respiration that, accompanied by decreased CI, may account for the increased oxidative stress. In galactose, PRKN-PD fibroblasts exhibited decreased basal/maximal respiration vs. controls and reduced mitochondrial CIV and oxidative stress compared to glucose, suggesting an inefficient mitochondrial oxidative capacity to meet an extra metabolic requirement. PRKN-PD fibroblasts presented decreased autophagic flux with reduction of autophagy substrate and autophagosome synthesis in both conditions.The alterations exhibited under neuron-like oxidative environment (galactose), may be relevant to the disease pathogenesis potentially explaining the increased susceptibility of dopaminergic neurons to undergo degeneration. Abnormal PRKN-PD phenotype supports the usefulness of fibroblasts to model disease and the view of PD as a systemic disease where molecular alterations are present in peripheral tissues.


Asunto(s)
Autofagia/genética , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Piel/metabolismo , Ubiquitina-Proteína Ligasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Mutación , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/genética
8.
Neurobiol Aging ; 65: 206-216, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29501959

RESUMEN

Mutations in the parkin gene (PRKN) are the most common cause of autosomal-recessive juvenile Parkinson's disease (PD). PRKN encodes an E3 ubiquitin ligase that is involved in multiple regulatory functions including proteasomal-mediated protein turnover, mitochondrial function, mitophagy, and cell survival. However, the precise molecular events mediated by PRKN mutations in PRKN-associated PD (PRKN-PD) remain unknown. To elucidate the cellular impact of parkin mutations, we performed an RNA sequencing study in skin fibroblasts from PRKN-PD patients carrying different PRKN mutations (n = 4) and genetically unrelated healthy subjects (n = 4). We identified 343 differentially expressed genes in PRKN-PD fibroblasts. Gene ontology and canonical pathway analysis revealed enrichment of differentially expressed genes in processes such as cell adhesion, cell growth, and amino acid and folate metabolism among others. Our findings indicate that PRKN mutations are associated with large global gene expression changes as observed in fibroblasts from PRKN-PD patients and support the view of PD as a systemic disease affecting also non-neural peripheral tissues such as the skin.


Asunto(s)
Fibroblastos , Mutación , Enfermedad de Parkinson/genética , Transcriptoma , Ubiquitina-Proteína Ligasas/genética , Adulto , Anciano , Aminoácidos/metabolismo , Adhesión Celular/genética , Procesos de Crecimiento Celular/genética , Células Cultivadas , Niño , Femenino , Fibroblastos/metabolismo , Fibroblastos/fisiología , Ácido Fólico/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ARN , Piel/citología , Ubiquitina-Proteína Ligasas/fisiología
9.
Curr Drug Metab ; 17(7): 648-62, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27000075

RESUMEN

BACKGROUND: Certain therapeutic drugs used in medical practice may trigger mitochondrial toxicity leading to a wide range of clinical symptoms including deafness, neuropathy, myopathy, hyperlactatemia, lactic acidosis, pancreatitis and lipodystrophy, among others, which could even compromise the life of the patient. OBJECTIVES: The aim of this work is to review the potential mitochondrial toxicity derived from drugs used in health care, including anesthetics, antiepileptics, neuroleptics, antidepressants, antivirals, antibiotics, antifungals, antimalarics, antineoplastics, antidiabetics, hypolipemiants, antiarrhythmics, anti-inflammatories and nitric oxide. METHODS: We herein have reviewed data from experimental and clinical studies to document the molecular mitochondrial basis, potential biomarkers and putative clinical symptoms associated to secondary effects of drugs. RESULTS: One hundred and forty-five articles were selected and the information was organized by means of the primary target to which pharmacologic drugs were directed. Adverse toxic events were classified depending on the mitochondrial offtarget effect and whether they had been demonstrated in the experimental or clinical setting. CONCLUSIONS: Since treatment of acquired mitochondriopathies remains supportive and therapeutic interventions cannot be avoided, information of molecular and clinical consequences of toxic exposure becomes fundamental to assess riskbenefit imbalance of treatment prescription. Additionally, there is a crucial need to develop less mitochondrial toxic compounds, novel biomarkers to follow up mitochondrial toxicity (or implement those already proposed) and new approaches to prevent or revert unintended mitochondrial damage.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/inducido químicamente , Animales , Humanos , Enfermedades Mitocondriales/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA