Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Inherit Metab Dis ; 47(3): 447-462, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38499966

RESUMEN

The objective of the study is to evaluate the evolving phenotype and genetic spectrum of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD) in long-term follow-up. Longitudinal clinical and biochemical data of 22 pediatric and 9 adult individuals with SSADHD from the patient registry of the International Working Group on Neurotransmitter related Disorders (iNTD) were studied with in silico analyses, pathogenicity scores and molecular modeling of ALDH5A1 variants. Leading initial symptoms, with onset in infancy, were developmental delay and hypotonia. Year of birth and specific initial symptoms influenced the diagnostic delay. Clinical phenotype of 26 individuals (median 12 years, range 1.8-33.4 years) showed a diversifying course in follow-up: 77% behavioral problems, 76% coordination problems, 73% speech disorders, 58% epileptic seizures and 40% movement disorders. After ataxia, dystonia (19%), chorea (11%) and hypokinesia (15%) were the most frequent movement disorders. Involvement of the dentate nucleus in brain imaging was observed together with movement disorders or coordination problems. Short attention span (78.6%) and distractibility (71.4%) were the most frequently behavior traits mentioned by parents while impulsiveness, problems communicating wishes or needs and compulsive behavior were addressed as strongly interfering with family life. Treatment was mainly aimed to control epileptic seizures and psychiatric symptoms. Four new pathogenic variants were identified. In silico scoring system, protein activity and pathogenicity score revealed a high correlation. A genotype/phenotype correlation was not observed, even in siblings. This study presents the diversifying characteristics of disease phenotype during the disease course, highlighting movement disorders, widens the knowledge on the genotypic spectrum of SSADHD and emphasizes a reliable application of in silico approaches.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Fenotipo , Succionato-Semialdehído Deshidrogenasa , Humanos , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Niño , Masculino , Femenino , Preescolar , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/genética , Lactante , Adolescente , Adulto Joven , Discapacidades del Desarrollo/genética , Trastornos del Movimiento/genética , Mutación , Hipotonía Muscular/genética
2.
J Inherit Metab Dis ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084654

RESUMEN

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis catalyzing the tetrahydrobiopterin (BH4 )-dependent hydroxylation of tyrosine to L-DOPA. Here, we analyzed 25 TH variants associated with various degrees of dopa-responsive dystonia and evaluate the effect of each variant on protein stability, activity and cellular localization. Furthermore, we investigated the physical interaction between TH and human wildtype (wt) GTP cyclohydrolase 1 (GTPCH) and the effect of variants on this interaction. Our in vitro results classify variants according to their resistance to proteinase K digestion into three groups (stable, intermediate, unstable). Based on their cellular localization, two groups of variants can be identified, variant group one with cytoplasmic distribution and variant group two forming aggregates. These aggregates do not correlate with loss of enzymatic activity but nevertheless might be a good target for molecular chaperones. Unfortunately, no obvious correlation between the half-life of a variant and its enzymatic activity or between solubility, stability and enzymatic activity of a given variant could be found. Excitingly, some variants disrupt the physical interaction between TH and human wildtype GTPCH, thereby interfering with enzymatic activity and offering new druggable targets for therapy. Taken together, our results highlight the importance of an in-depth molecular analysis of each variant in order to be able to classify groups of disease variants and to find specific therapies for each subgroup. Stand-alone in silico analyses predict less precise the effect of specific variants and should be combined with other in vitro analyses in cellular model systems.

3.
Genet Med ; 22(6): 1061-1068, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32099069

RESUMEN

PURPOSE: TNR, encoding Tenascin-R, is an extracellular matrix glycoprotein involved in neurite outgrowth and neural cell adhesion, proliferation and migration, axonal guidance, myelination, and synaptic plasticity. Tenascin-R is exclusively expressed in the central nervous system with highest expression after birth. The protein is crucial in the formation of perineuronal nets that ensheath interneurons. However, the role of Tenascin-R in human pathology is largely unknown. We aimed to establish TNR as a human disease gene and unravel the associated clinical spectrum. METHODS: Exome sequencing and an online matchmaking tool were used to identify patients with biallelic variants in TNR. RESULTS: We identified 13 individuals from 8 unrelated families with biallelic variants in TNR sharing a phenotype consisting of spastic para- or tetraparesis, axial muscular hypotonia, developmental delay, and transient opisthotonus. Four homozygous loss-of-function and four different missense variants were identified. CONCLUSION: We establish TNR as a disease gene for an autosomal recessive nonprogressive neurodevelopmental disorder with spasticity and transient opisthotonus and highlight the role of central nervous system extracellular matrix proteins in the pathogenicity of spastic disorders.


Asunto(s)
Espasticidad Muscular , Trastornos del Neurodesarrollo , Sistema Nervioso Central , Matriz Extracelular , Homocigoto , Humanos , Espasticidad Muscular/genética , Trastornos del Neurodesarrollo/genética
4.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33203024

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare, monogenic disorder affecting the degradation of the main inhibitory neurotransmitter γ-amino butyric acid (GABA). Pathogenic variants in the ALDH5A1 gene that cause an enzymatic dysfunction of succinic semialdehyde dehydrogenase (SSADH) lead to an accumulation of potentially toxic metabolites, including γ-hydroxybutyrate (GHB). Here, we present a patient with a severe phenotype of SSADHD caused by a novel genetic variant c.728T > C that leads to an exchange of leucine to proline at residue 243, located within the highly conserved nicotinamide adenine dinucleotide (NAD)+ binding domain of SSADH. Proline harbors a pyrrolidine within its side chain known for its conformational rigidity and disruption of protein secondary structures. We investigate the effect of this novel variant in vivo, in vitro, and in silico. We furthermore examine the mutational spectrum of all previously described disease-causing variants and computationally assess all biologically possible missense variants of ALDH5A1 to identify mutational hotspots.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Simulación por Computador , Discapacidades del Desarrollo , Mutación Missense , Succionato-Semialdehído Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Sustitución de Aminoácidos , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/genética , Células HEK293 , Humanos , Dominios Proteicos , Succionato-Semialdehído Deshidrogenasa/genética , Succionato-Semialdehído Deshidrogenasa/metabolismo
5.
Neuropediatrics ; 50(1): 2-14, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30372766

RESUMEN

Neurotransmitter deficiencies are rare neurological disorders with clinical onset during childhood. The disorders are caused by genetic defects in the enzymes involved in synthesis, degradation, or transport of neurotransmitters or by defects in the cofactor biosynthesis such as tetrahydrobiopterin (BH4). With the newly described DNAJC12 deficiency, a chaperon-associated neurotransmitter disorder, the pathophysiological spectrum has been broadened. All deficiencies result in a lack of monoamine neurotransmitters, especially dopamine and its products, with a subset leading to decreased levels of serotonin. Symptoms can occur already in the neonatal period. Classical signs are hypotonia, movement disorders, autonomous dysregulations, and impaired development. Diagnosis depends on quantitative detection of neurotransmitters in cerebrospinal fluid, since peripheral markers in blood or urine are less reliable. Treatment is based on supplementation of the missing neurotransmitter precursors or restoring deficient cofactors for endogenous enzymatic synthesis. In recent years, knowledge about this orphan group of diseases increased substantially among clinicians. However, the difficult task of integrating clinical symptoms and laboratory values still leads to a critical delay in diagnosis and therapy for patients. This review aims at enhancing the understanding of neurotransmitter disorders and should help practicing clinicians to choose useful diagnostic steps on the way to a valid diagnosis.


Asunto(s)
Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/metabolismo , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/metabolismo , Neurotransmisores/deficiencia , Animales , Dopamina/deficiencia , Dopamina/uso terapéutico , Humanos , Trastornos del Movimiento/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Neurotransmisores/uso terapéutico , Serotonina/deficiencia , Serotonina/uso terapéutico
6.
J Inherit Metab Dis ; 41(6): 1103-1116, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29980968

RESUMEN

The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the way of modeling human disease. Especially for the modeling of rare human monogenetic diseases with limited numbers of patients available worldwide and limited access to the mostly affected tissues, iPSCs have become an invaluable tool. To study rare diseases affecting neurotransmitter biosynthesis and neurotransmission, stem cell models carrying patient-specific mutations have become highly important as most of the cell types present in the human brain and the central nervous system (CNS), including motoneurons, neurons, oligodendrocytes, astrocytes, and microglia, can be differentiated from iPSCs following distinct developmental programs. Differentiation can be performed using classical 2D differentiation protocols, thereby generating specific subtypes of neurons or glial cells in a dish. On the other side, 3D differentiation into "organoids" opened new ways to study misregulated developmental processes associated with rare neurological and neurometabolic diseases. For the analysis of defects in neurotransmission associated with rare neurometabolic diseases, different types of brain organoids have been made available during the last years including forebrain, midbrain and cerebral organoids. In this review, we illustrate reprogramming of somatic cells to iPSCs, differentiation in 2D and 3D, as well as already available disease-specific iPSC models, and discuss current and future applications of these techniques.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Errores Innatos del Metabolismo , Modelos Neurológicos , Animales , Diferenciación Celular , Técnicas de Cultivo , Humanos , Microglía/citología , Neuronas/citología , Neurotransmisores/metabolismo , Oligodendroglía/citología
7.
Sci Data ; 11(1): 514, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769371

RESUMEN

Brain organoids represent a useful tool for modeling of neurodevelopmental disorders and can recapitulate brain volume alterations such as microcephaly. To monitor organoid growth, brightfield microscopy images are frequently used and evaluated manually which is time-consuming and prone to observer-bias. Recent software applications for organoid evaluation address this issue using classical or AI-based methods. These pipelines have distinct strengths and weaknesses that are not evident to external observers. We provide a dataset of more than 1,400 images of 64 trackable brain organoids from four clones differentiated from healthy and diseased patients. This dataset is especially powerful to test and compare organoid analysis pipelines because of (1) trackable organoids (2) frequent imaging during development (3) clone diversity (4) distinct clone development (5) cross sample imaging by two different labs (6) common imaging distractors, and (6) pixel-level ground truth organoid annotations. Therefore, this dataset allows to perform differentiated analyses to delineate strengths, weaknesses, and generalizability of automated organoid analysis pipelines as well as analysis of clone diversity and similarity.


Asunto(s)
Encéfalo , Organoides , Organoides/citología , Encéfalo/diagnóstico por imagen , Encéfalo/citología , Humanos
8.
Sci Rep ; 13(1): 21231, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040865

RESUMEN

Cerebral organoids recapitulate the structure and function of the developing human brain in vitro, offering a large potential for personalized therapeutic strategies. The enormous growth of this research area over the past decade with its capability for clinical translation makes a non-invasive, automated analysis pipeline of organoids highly desirable. This work presents a novel non-invasive approach to monitor and analyze cerebral organoids over time using high-field magnetic resonance imaging and state-of-the-art tools for automated image analysis. Three specific objectives are addressed, (I) organoid segmentation to investigate organoid development over time, (II) global cysticity classification and (III) local cyst segmentation for organoid quality assessment. We show that organoid growth can be monitored reliably over time and cystic and non-cystic organoids can be separated with high accuracy, with on par or better performance compared to state-of-the-art tools applied to brightfield imaging. Local cyst segmentation is feasible but could be further improved in the future. Overall, these results highlight the potential of the pipeline for clinical application to larger-scale comparative organoid analysis.


Asunto(s)
Quistes , Organoides , Humanos , Organoides/patología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Quistes/patología , Inteligencia Artificial
9.
Stem Cell Res ; 64: 102879, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35930870

RESUMEN

TUBB2A tubulinopathy is a rare neurodevelopmental disorder with developmental delay, epilepsy, and less frequent malformations of cortical development compared to other tubulinopathies. Peripheral blood mononuclear cells (PBMCs) from a male subject harboring the heterozygous de novo TUBB2A variant c.[743C>T] (p.[Ala248Val]) were reprogrammed to induced pluripotent stem cells (iPSCs) using the CytoTune™-iPS 2.0 Sendai Reprogramming Kit (Invitrogen). Generated iPSCs showed a normal karyotype, expression of pluripotency markers, spontaneous in vitro differentiation in all three germ layers, and are a suitable human disease model to analyze pathomechanisms underlying TUBB2A tubulinopathy and potential therapeutic targets.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Masculino , Diferenciación Celular , Reprogramación Celular , Heterocigoto , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Leucocitos Mononucleares/metabolismo , Tubulina (Proteína)
10.
Stem Cell Res ; 62: 102818, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35636247

RESUMEN

Variants in different neuronal tubulin isotypes cause severe neurodevelopmental disorders with cerebral malformations accompanied by developmental delay, motor impairment, and epilepsy, known as tubulinopathies. Induced pluripotent stem cells were generated from peripheral blood mononuclear cells from a female subject carrying the heterozygous de novo variant c.[521C > T] (p.[Ala174Val]) in the TUBA1A gene. PBMCs were reprogrammed using the CytoTune™-iPS 2.0 Sendai Reprogramming Kit (Invitrogen) and showed a normal karyotype, expression of pluripotency markers, and spontaneous in vitro differentiation into all three germ layers. The generated iPSCs represent a useful tool to study the pathophysiology of TUBA1A tubulinopathy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular/fisiología , Reprogramación Celular , Diástasis Muscular , Femenino , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
11.
Stem Cell Res ; 57: 102579, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34695767

RESUMEN

Mutations in the PKHD1 gene, encoding for the ciliary protein fibrocystin, play a major role in the cystogenesis in autosomal recessive polycystic kidney disease (ARPKD), a severe pediatric kidney disorder. Peripheral blood mononuclear cells (PBMCs) from a female patient carrying a compound heterozygous PKHD1 mutation (c.6331A>G(;)7717C>T) were obtained and reprogrammed by viral transduction using the Cytotune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen). The resulting iPSCs display a normal karyotype, express pluripotency markers, and show the potential for spontaneous differentiation in vitro, offering a useful tool for studying ARPKD pathomechanisms and drug screening.

12.
Stem Cell Res ; 57: 102573, 2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34688127

RESUMEN

Autosomal recessive polycystic kidney disease (ARPKD) is a severe pediatric kidney disorder primarily caused by mutations in the fibrocystin-encoding PKHD1 gene. It is characterized by the progressive development of cysts, eventually leading to renal failure. In order to create patient specific iPSCs, peripheral blood mononuclear cells (PBMCs) from a female patient carrying a homozygous PKHD1 mutation (c.8285A>T(;)(8285A>T)) were reprogrammed using the non-integral Cytotune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen). Morphology and karyotype of the cells are normal. Pluripotency hallmarks as well as the potential to spontaneously differentiate into all three germ layers were shown by immunofluorescence staining and RT-PCR.

13.
Cells ; 9(2)2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093054

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADH-D) is a genetic disorder that results from the aberrant metabolism of the neurotransmitter γ-amino butyric acid (GABA). The disease is caused by impaired activity of the mitochondrial enzyme succinic semialdehyde dehydrogenase. SSADH-D manifests as varying degrees of mental retardation, autism, ataxia, and epileptic seizures, but the clinical picture is highly heterogeneous. So far, there is no approved curative therapy for this disease. In this review, we briefly summarize the molecular genetics of SSADH-D, the past and ongoing clinical trials, and the emerging features of the molecular pathogenesis, including redox imbalance and mitochondrial dysfunction. The main aim of this review is to discuss the potential of further therapy approaches that have so far not been tested in SSADH-D, such as pharmacological chaperones, read-through drugs, and gene therapy. Special attention will also be paid to elucidating the role of patient advocacy organizations in facilitating research and in the communication between researchers and patients.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Discapacidades del Desarrollo/tratamiento farmacológico , Discapacidades del Desarrollo/genética , Terapia de Reemplazo Enzimático/métodos , Terapia Genética/métodos , Terapia Molecular Dirigida/métodos , Succionato-Semialdehído Deshidrogenasa/deficiencia , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Animales , Niño , Ensayos Clínicos como Asunto , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/fisiopatología , Modelos Animales de Enfermedad , Humanos , Ratones , Mutación , Succionato-Semialdehído Deshidrogenasa/química , Succionato-Semialdehído Deshidrogenasa/genética , Ácido gamma-Aminobutírico/metabolismo
14.
Cells ; 8(8)2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31405045

RESUMEN

Inborn errors of monoamine neurotransmitter biosynthesis and degradation belong to the rare inborn errors of metabolism. They are caused by monogenic variants in the genes encoding the proteins involved in (1) neurotransmitter biosynthesis (like tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC)), (2) in tetrahydrobiopterin (BH4) cofactor biosynthesis (GTP cyclohydrolase 1 (GTPCH), 6-pyruvoyl-tetrahydropterin synthase (PTPS), sepiapterin reductase (SPR)) and recycling (pterin-4a-carbinolamine dehydratase (PCD), dihydropteridine reductase (DHPR)), or (3) in co-chaperones (DNAJC12). Clinically, they present early during childhood with a lack of monoamine neurotransmitters, especially dopamine and its products norepinephrine and epinephrine. Classical symptoms include autonomous dysregulations, hypotonia, movement disorders, and developmental delay. Therapy is predominantly based on supplementation of missing cofactors or neurotransmitter precursors. However, diagnosis is difficult and is predominantly based on quantitative detection of neurotransmitters, cofactors, and precursors in cerebrospinal fluid (CSF), urine, and blood. This review aims at summarizing the diverse analytical tools routinely used for diagnosis to determine quantitatively the amounts of neurotransmitters and cofactors in the different types of samples used to identify patients suffering from these rare diseases.


Asunto(s)
Catecolaminas/análisis , Errores Innatos del Metabolismo/metabolismo , Proteínas de Transporte de Neurotransmisores/metabolismo , Pterinas/análisis , Animales , Humanos , Errores Innatos del Metabolismo/diagnóstico
15.
Stem Cell Res ; 36: 101402, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30901742

RESUMEN

Skin fibroblasts were isolated from a male patient with DNAJC12 deficiency and reprogrammed to iPSCs using the Cytotune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen). Two clones, DHMCi003-A and DHMCi003-B, were characterized for expression of pluripotency marker genes (Oct4, Nanog, Lin28, SSEA-4, TRA-1-60) and differentiated into all three germ layers using embryoid body (EB) formation. Karyotype of both clones was normal and presence of the homozygous mutation in the DNAJC12 gene was verified by PCR and Sanger sequencing. Both clones represent a useful tool to study the pathomechanisms underlying the deficiency.


Asunto(s)
Células Clonales , Células Madre Pluripotentes Inducidas , Proteínas Represoras/genética , Diferenciación Celular , Técnicas de Reprogramación Celular , Fibroblastos , Genotipo , Homocigoto , Humanos , Cariotipo , Masculino , Piel
16.
Stem Cell Res ; 37: 101428, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959346

RESUMEN

Variants in SCYL1 can cause a syndrome with low γ-glutamyl-transferase cholestasis, acute liver failure, and neurodegeneration (CALFAN). The encoded protein is involved in intracellular trafficking between Golgi and ER, specific mechanisms are still to be elucidated. We reprogrammed fibroblasts of a 2 years old male patient with CALFAN Syndrome due to a homozygous nonsense variant in SCYL1 (c.[1882C > T]; c.[1882C > T]/p.[Gln628*]; p.[Gln628*]) and generated DHMCi005-A using the Cytotune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen). Cells showed a normal karyotype. Pluripotency was proven using immunohistochemistry, RT-PCR, and flow cytometry. Differentiation into all germ layers was shown using the STEMdiff™ Trilineage Differentiation Kit (Stemcell Technologies).


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Diferenciación Celular , Reprogramación Celular , Proteínas de Unión al ADN/genética , Fibroblastos/patología , Células Madre Pluripotentes Inducidas/patología , Fallo Hepático Agudo/genética , Mutación , Células Cultivadas , Preescolar , Colestasis/genética , Colestasis/patología , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fallo Hepático Agudo/patología , Masculino , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , gamma-Glutamiltransferasa/deficiencia
17.
Stem Cell Res ; 35: 101398, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30772683

RESUMEN

Fibroblasts of a patient with Infantile Liver Failure Syndrome 2 (OMIM #616483) due to a homozygous missense variant in the neuroblastoma amplified sequence gene (NBAS; c.[2708T>G]; c.[2708T>G]/p.[Leu903Arg]; p.[Leu903Arg]) were reprogrammed to iPSCs using the Cytotune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen) delivering the reprogramming factors Oct3/4, Sox2, c-Myc and Klf4. Cells showed a normal karyotype. Pluripotency of DHMCi004-A was proven using immunohistochemistry, RT-PCR analysis, flow cytometry and differentiation into all three germ layers using the STEMdiff™ Trilineage Differentiation Kit (Stemcell Technologies). DHMCi004-A represents the first iPS-based cell model system to elucidate the pathomechanism underlying this disease.


Asunto(s)
Línea Celular , Enfermedades Genéticas Congénitas , Células Madre Pluripotentes Inducidas , Fallo Hepático , Mutación Missense , Proteínas de Neoplasias , Preescolar , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Factor 4 Similar a Kruppel , Fallo Hepático/genética , Fallo Hepático/patología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Síndrome
18.
Stem Cell Res ; 20: 38-41, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28395739

RESUMEN

Fibroblasts from a female patient carrying a heterozygous variation in GTP cyclohydrolase 1 (GCH1; OMIM: 600225; HGNC: 4193; c.235_240del/p.(L79_S80del)), the rate-limiting enzyme of tetrahydrobiopterin (BH4) synthesis, were reprogrammed to iPSCs using the Cytotune®-iPS 2.0 Sendai Reprogramming Kit (Invitrogen) delivering the four reprogramming factors Oct3/4, Sox2, c-Myc and Klf4. Pluripotency of HDMC0061i-GCH1 was verified using immunohistochemistry and RT-PCR analysis. Cells differentiated spontaneously into the 3 germ layers in vitro and presented a normal karyotype. HDMC0061i-GCH1 represents the first model system to elucidate the pathomechanism underlying this rare metabolic disease and a useful tool for drug testing.


Asunto(s)
Reprogramación Celular , GTP Ciclohidrolasa/genética , Células Madre Pluripotentes Inducidas/citología , Fenilcetonurias/patología , Secuencia de Bases , Diferenciación Celular , Línea Celular , Análisis Mutacional de ADN , Cuerpos Embrioides/metabolismo , Cuerpos Embrioides/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Eliminación de Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipo , Factor 4 Similar a Kruppel , Microscopía Fluorescente , Fenilcetonurias/genética , Fenilcetonurias/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Stem Cell Res ; 17(3): 580-583, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27934587

RESUMEN

Fibroblasts from a male patient with compound heterozygous variants in the tyrosine hydroxylase gene (TH; OMIM: 191290; c.[385-C>T]; [692-G>C]/p.[R129*]; [R231P]), the rate-limiting enzyme for dopamine synthesis, were reprogrammed to iPSCs using episomal reprogramming delivering the reprogramming factors Oct3/4, Sox2, L-Myc, Lin28, Klf4 and p53 shRNA Okita et al. (2011). Pluripotency of TH-1 iPSC was verified by immunohistochemistry and RT-PCR analysis. Cells exhibited a normal karyotype and differentiated spontaneously into the 3 germ layers in vitro. TH-1 iPSC represents the first model system to study the pathomechanism of this rare metabolic disease and provides a useful tool for drug testing.


Asunto(s)
Trastornos Distónicos/congénito , Células Madre Pluripotentes Inducidas/citología , Tirosina 3-Monooxigenasa/genética , Secuencia de Bases , Diferenciación Celular , Línea Celular , Reprogramación Celular , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Trastornos Distónicos/genética , Trastornos Distónicos/patología , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Fibroblastos/citología , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipo , Factor 4 Similar a Kruppel , Masculino , Plásmidos/genética , Plásmidos/metabolismo , Polimorfismo de Nucleótido Simple , Interferencia de ARN , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
Sci Rep ; 6: 35794, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27786189

RESUMEN

The CRISPR/Cas9 system is a recently developed genome editing technique. In this study, we used a modified CRISPR system, which employs the fusion of inactive Cas9 (dCas9) and the FokI endonuclease (FokI-dCas9) to correct the most common variant (allele frequency 21.4%) in the phenylalanine hydroxylase (PAH) gene - c.1222C>T (p.Arg408Trp) - as an approach toward curing phenylketonuria (PKU). PKU is the most common inherited diseases in amino acid metabolism. It leads to severe neurological and neuropsychological symptoms if untreated or late diagnosed. Correction of the disease-causing variants could rescue residual PAH activity and restore normal function. Co-expression of a single guide RNA plasmid, a FokI-dCas9-zsGreen1 plasmid, and the presence of a single-stranded oligodeoxynucleotide in PAH_c.1222C>T COS-7 cells - an in vitro model for PKU - corrected the PAH variant and restored PAH activity. Also in this system, the HDR enhancer RS-1 improved correction efficiency. This proof-of-concept indicates the potential of the FokI-dCas9 system for precision medicine, in particular for targeting PKU and other monogenic metabolic diseases.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Terapia Genética/métodos , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/etiología , Animales , Células COS , Chlorocebus aethiops , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Elementos de Facilitación Genéticos , Humanos , Mutación , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/genética , Plásmidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA