Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Photochem Photobiol ; 99(2): 826-834, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36109156

RESUMEN

Cellular oxidative stress contributes to solar ultraviolet (UV) radiation-induced skin photoaging and photocarcinogenesis. Light-driven electron and energy transfer reactions involving non-DNA chromophores are a major source of reactive oxygen species (ROS) in skin, and the molecular identity of numerous endogenous chromophores acting as UV-photosensitizers has been explored. Methylglyoxal (MG), a glycolytic byproduct bearing a UV-active α-dicarbonyl-chromophore, is generated under metabolic conditions of increased glycolytic flux, associated with posttranslational protein adduction in human tissue. Here, we undertook a photophysical and photochemical characterization of MG substantiating its fluorescence properties (Stokes shift), phosphorescence lifetime, and quantum yield of singlet oxygen (1 O2 ) formation. Strikingly, upon UV-excitation (290 nm), a clear emission (around 490 nm) was observed (phosphorescence-lifetime: 224.2 milliseconds). At micromolar concentrations, MG acts as a UVA-photosensitizer targeting human HaCaT-keratinocytes inducing photooxidative stress and caspase-dependent cell death substantiated by zVADfmk-rescue and Alexa-488 caspase-3 flow cytometry. Transcriptomic analysis indicated that MG (photoexcited by noncytotoxic doses of UVA) elicits expression changes not observable upon isolated MG- or UVA-treatment, with upregulation of the proteotoxic (CRYAB, HSPA6) and oxidative (HMOX1) stress response. Given the metabolic origin of MG and its role in human pathology, future investigations should address the potential involvement of MG-photosensitizer activity in human skin photodamage.


Asunto(s)
Fármacos Fotosensibilizantes , Piruvaldehído , Humanos , Fármacos Fotosensibilizantes/farmacología , Piruvaldehído/farmacología , Piruvaldehído/metabolismo , Estrés Proteotóxico , Rayos Ultravioleta , Queratinocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Expresión Génica , Glucólisis
2.
Photochem Photobiol ; 97(1): 180-191, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32767762

RESUMEN

UV-chromophores contained in human skin may act as endogenous sensitizers of photooxidative stress and can be employed therapeutically for the photodynamic elimination of malignant cells. Here, we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan-derived photoproduct and endogenous aryl hydrocarbon receptor agonist, displays activity as a nanomolar sensitizer of photooxidative stress, causing the photodynamic elimination of human melanoma and nonmelanoma skin cancer cells in vitro and in vivo. FICZ is an efficient UVA/Visible photosensitizer having absorbance maximum at 390 nm (ε = 9180 L mol-1  cm-1 ), and fluorescence and singlet oxygen quantum yields of 0.15 and 0.5, respectively, in methanol. In a panel of cultured human squamous cell carcinoma and melanoma skin cancer cells (SCC-25, HaCaT-ras II-4, A375, G361, LOX), photodynamic induction of cell death was elicited by the combined action of solar simulated UVA (6.6 J cm-2 ) and FICZ (≥10 nm), preceded by the induction of oxidative stress as substantiated by MitoSOX Red fluorescence microscopy, comet detection of Fpg-sensitive oxidative genomic lesions and upregulated stress response gene expression (HMOX1, HSPA1A, HSPA6). In SKH1 "high-risk" mouse skin, an experimental FICZ/UVA photodynamic treatment regimen blocked the progression of UV-induced tumorigenesis suggesting feasibility of harnessing FICZ for the photooxidative elimination of malignant cells in vivo.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Triptófano/análogos & derivados , Animales , Carbazoles , Muerte Celular , Línea Celular Tumoral , Epidermis/efectos de los fármacos , Epidermis/efectos de la radiación , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Ratones , Mitocondrias , Estrés Oxidativo , Fármacos Fotosensibilizantes/química , Terapia Ultravioleta
3.
Cancers (Basel) ; 11(5)2019 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-31035569

RESUMEN

Redox-directed pharmacophores have shown potential for the apoptotic elimination of cancer cells through chemotherapeutic induction of oxidative stress. Phenazine methosulfate (PMS), a N-alkylphenazinium cation-based redox cycler, is used widely as an electron transfer reactant coupling NAD(P)H generation to the reduction of tetrazolium salts in biochemical cell viability assays. Here, we have explored feasibility of repurposing the redox cycler PMS as a superoxide generating chemotherapeutic for the pro-oxidant induction of cancer cell apoptosis. In a panel of malignant human melanoma cells (A375, G361, LOX), low micromolar concentrations of PMS (1-10 µM, 24 h) displayed pronounced apoptogenicity as detected by annexin V-ITC/propidium iodide flow cytometry, and PMS-induced cell death was suppressed by antioxidant (NAC) or pan-caspase inhibitor (zVAD-fmk) cotreatment. Gene expression array analysis in A375 melanoma cells (PMS, 10 µM; 6 h) revealed transcriptional upregulation of heat shock (HSPA6, HSPA1A), oxidative (HMOX1) and genotoxic (EGR1, GADD45A) stress responses, confirmed by immunoblot detection demonstrating upregulation of redox regulators (NRF2, HO-1, HSP70) and modulation of pro- (BAX, PUMA) and anti-apoptotic factors (Bcl-2, Mcl-1). PMS-induced oxidative stress and glutathione depletion preceded induction of apoptotic cell death. Furthermore, the mitochondrial origin of PMS-induced superoxide production was substantiated by MitoSOX-Red live cell fluorescence imaging, and PMS-induced mitochondriotoxicity (as evidenced by diminished transmembrane potential and oxygen consumption rate) was observable at early time points. After demonstrating NADPH-driven (SOD-suppressible) superoxide radical anion generation by PMS employing a chemical NBT reduction assay, PMS-induction of oxidative genotoxic stress was substantiated by quantitative Comet analysis that confirmed the introduction of formamido-pyrimidine DNA glycosylase (Fpg)-sensitive oxidative DNA lesions in A375 melanoma cells. Taken together, these data suggest feasibility of repurposing the biochemical reactant PMS as an experimental pro-oxidant targeting mitochondrial integrity and redox homeostasis for the apoptotic elimination of malignant melanoma cells.

4.
Photochem Photobiol ; 93(6): 1472-1482, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28503778

RESUMEN

Nonmelanoma skin cancer (NMSC) is the most common malignancy in the United States representing a considerable public health burden. Pharmacological suppression of skin photocarcinogenesis has shown promise in preclinical and clinical studies, but more efficacious photochemopreventive agents are needed. Here, we tested feasibility of harnessing pharmacological disruption of intracellular zinc homeostasis for photochemoprevention in vitro and in vivo. Employing the zinc ionophore and FDA-approved microbicidal agent zinc pyrithione (ZnPT), used worldwide in over-the-counter (OTC) topical consumer products, we first demonstrated feasibility of achieving ZnPT-based intracellular Zn2+ overload in cultured malignant keratinocytes (HaCaT-ras II-4; SCC-25) employing membrane-permeable fluorescent probes. Zinc overload was accompanied by induction of intracellular oxidative stress, associated with mitochondrial superoxide release as substantiated by MitoSOX Red™ fluorescence microscopy. ZnPT-induced cell death observable in malignant keratinocytes was preceded by induction of metal (MT2A), proteotoxic (HSPA6, HSPA1A, DDIT3, HMOX1) and genotoxic stress response (GADD45A, XRCC2) gene expression at the mRNA and protein levels. Comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (Fpg)-sensitive oxidative DNA lesions. In a photocarcinogenesis model (UV-exposed SKH-1 high-risk mouse skin), topical ZnPT administration post-UV caused epidermal zinc overload and stress response gene expression with pronounced blockade of tumorigenesis. Taken together, these data suggest feasibility of repurposing a topical OTC drug for zinc-directed photochemoprevention of solar UV-induced NMSC.


Asunto(s)
Carcinogénesis , Ionóforos/química , Rayos Ultravioleta , Zinc/química , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/efectos de la radiación , Línea Celular Tumoral , Expresión Génica , Humanos , Ionóforos/farmacología , Queratinocitos/efectos de los fármacos , Ratones , Estrés Fisiológico/efectos de los fármacos
5.
Photochem Photobiol ; 93(4): 990-998, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28083878

RESUMEN

UVA-driven photooxidative stress in human skin may originate from excitation of specific endogenous chromophores acting as photosensitizers. Previously, we have demonstrated that 3-hydroxypyridine-derived chromophores including B6 -vitamers (pyridoxine, pyridoxamine and pyridoxal) are endogenous photosensitizers that enhance UVA-induced photooxidative stress in human skin cells. Here, we report that the B6 -vitamer pyridoxal is a sensitizer of genotoxic stress in human adult primary keratinocytes (HEKa) and reconstructed epidermis. Comparative array analysis indicated that exposure to the combined action of pyridoxal and UVA caused upregulation of heat shock (HSPA6, HSPA1A, HSPA1L, HSPA2), redox (GSTM3, EGR1, MT2A, HMOX1, SOD1) and genotoxic (GADD45A, DDIT3, CDKN1A) stress response gene expression. Together with potentiation of UVA-induced photooxidative stress and glutathione depletion, induction of HEKa cell death occurred only in response to the combined action of pyridoxal and UVA. In addition to activational phosphorylation indicative of genotoxic stress [p53 (Ser15) and γ-H2AX (Ser139)], comet analysis indicated the formation of Fpg-sensitive oxidative DNA lesions, observable only after combined exposure to pyridoxal and UVA. In human reconstructed epidermis, pyridoxal preincubation followed by UVA exposure caused genomic oxidative base damage, procaspase 3 cleavage and TUNEL positivity, consistent with UVA-driven photooxidative damage that may be relevant to human skin exposed to high concentrations of B6 -vitamers.


Asunto(s)
Daño del ADN , Epidermis/efectos de los fármacos , Epidermis/efectos de la radiación , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Piridoxal/farmacología , Rayos Ultravioleta/efectos adversos , Adulto , Células Cultivadas , Epidermis/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de la radiación , Humanos , Queratinocitos/metabolismo
6.
Front Neurosci ; 11: 737, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29379409

RESUMEN

The discovery of biomarkers for Parkinson's disease (PD) is challenging due to the heterogeneous nature of this disorder, and a poor correlation between the underlying pathology and the clinically expressed phenotype. An ideal biomarker would inform on PD-relevant pathological changes via an easily assayed biological characteristic, which reliably tracks clinical symptoms. Human dermal (skin) fibroblasts are accessible peripheral cells that constitute a patient-specific system, which potentially recapitulates the PD chronological and epigenetic aging history. Here, we compared primary skin fibroblasts obtained from individuals diagnosed with late-onset sporadic PD, and healthy age-matched controls. These fibroblasts were studied from fundamental viewpoints of growth and morphology, as well as redox, mitochondrial, and autophagic function. It was observed that fibroblasts from PD subjects had higher growth rates, and appeared distinctly different in terms of morphology and spatial organization in culture, compared to control cells. It was also found that the PD fibroblasts exhibited significantly compromised mitochondrial structure and function when assessed via morphological and oxidative phosphorylation assays. Additionally, a striking increase in baseline macroautophagy levels was seen in cells from PD subjects. Exposure of the skin fibroblasts to physiologically relevant stress, specifically ultraviolet irradiation (UVA), further exaggerated the autophagic dysfunction in the PD cells. Moreover, the PD fibroblasts accumulated higher levels of reactive oxygen species (ROS) coupled with lower cell viability upon UVA treatment. In essence, these studies highlight primary skin fibroblasts as a patient-relevant model that captures fundamental PD molecular mechanisms, and supports their potential utility to develop diagnostic and prognostic biomarkers for the disease.

7.
J Invest Dermatol ; 135(6): 1649-1658, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25431849

RESUMEN

Endogenous UVA chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high-affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar-simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, endoplasmic reticulum stress, and oxidative stress response gene expression observed only upon FICZ/UVA cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (Fpg)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin.


Asunto(s)
Carbazoles/química , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Fármacos Fotosensibilizantes/química , Piel/efectos de los fármacos , Piel/efectos de la radiación , Triptófano/química , Animales , Antioxidantes/química , Línea Celular , ADN/química , ADN Glicosilasas/metabolismo , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Epidermis/efectos de la radiación , Femenino , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Ligandos , Ratones , Estrés Oxidativo , Fotoquimioterapia/métodos , Reacción en Cadena de la Polimerasa , Receptores de Hidrocarburo de Aril/química
8.
Redox Biol ; 1: 532-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24273736

RESUMEN

Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT-treated reconstructs that displayed increased immunohistochemical staining for Nrf2 and γ-GCS together with the elevation of total glutathione levels. Taken together, our data suggest the feasibility of achieving tanshinone-based cutaneous Nrf2-activation and photoprotection.


Asunto(s)
Abietanos/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Protectores Solares/farmacología , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ubiquitinación/efectos de los fármacos , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA