Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Adv Exp Med Biol ; 3234: 173-190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507207

RESUMEN

High-resolution structure determination by electron cryo-microscopy underwent a step change in recent years. This now allows study of challenging samples which previously were inaccessible for structure determination, including membrane proteins. These developments shift the focus in the field to the next bottlenecks which are high-quality sample preparations. While the amounts of sample required for cryo-EM are relatively small, sample quality is the key challenge. Sample quality is influenced by the stability of complexes which depends on buffer composition, inherent flexibility of the sample, and the method of solubilization from the membrane for membrane proteins. It further depends on the choice of sample support, grid pre-treatment and cryo-grid freezing protocol. Here, we discuss various widely applicable approaches to improve sample quality for structural analysis by cryo-EM.


Asunto(s)
Electrones , Proteínas de la Membrana , Microscopía por Crioelectrón/métodos , Congelación , Manejo de Especímenes/métodos , Sustancias Macromoleculares
2.
Proc Natl Acad Sci U S A ; 116(42): 20984-20990, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570616

RESUMEN

Plants, algae, and cyanobacteria fix carbon dioxide to organic carbon with the Calvin-Benson (CB) cycle. Phosphoribulokinase (PRK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are essential CB-cycle enzymes that control substrate availability for the carboxylation enzyme Rubisco. PRK consumes ATP to produce the Rubisco substrate ribulose bisphosphate (RuBP). GAPDH catalyzes the reduction step of the CB cycle with NADPH to produce the sugar glyceraldehyde 3-phosphate (GAP), which is used for regeneration of RuBP and is the main exit point of the cycle. GAPDH and PRK are coregulated by the redox state of a conditionally disordered protein CP12, which forms a ternary complex with both enzymes. However, the structural basis of CB-cycle regulation by CP12 is unknown. Here, we show how CP12 modulates the activity of both GAPDH and PRK. Using thermophilic cyanobacterial homologs, we solve crystal structures of GAPDH with different cofactors and CP12 bound, and the ternary GAPDH-CP12-PRK complex by electron cryo-microscopy, we reveal that formation of the N-terminal disulfide preorders CP12 prior to binding the PRK active site, which is resolved in complex with CP12. We find that CP12 binding to GAPDH influences substrate accessibility of all GAPDH active sites in the binary and ternary inhibited complexes. Our structural and biochemical data explain how CP12 integrates responses from both redox state and nicotinamide dinucleotide availability to regulate carbon fixation.


Asunto(s)
Proteínas Bacterianas/química , Cianobacterias/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fotosíntesis/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cianobacterias/química , Cianobacterias/genética , Cianobacterias/metabolismo , Gliceraldehído 3-Fosfato/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Luz , NADP/química , NADP/metabolismo , Oxidación-Reducción/efectos de la radiación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Thermosynechococcus
3.
Proc Natl Acad Sci U S A ; 113(37): 10346-51, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27573845

RESUMEN

The ability to design and construct structures with atomic level precision is one of the key goals of nanotechnology. Proteins offer an attractive target for atomic design because they can be synthesized chemically or biologically and can self-assemble. However, the generalized protein folding and design problem is unsolved. One approach to simplifying the problem is to use a repetitive protein as a scaffold. Repeat proteins are intrinsically modular, and their folding and structures are better understood than large globular domains. Here, we have developed a class of synthetic repeat proteins based on the pentapeptide repeat family of beta-solenoid proteins. We have constructed length variants of the basic scaffold and computationally designed de novo loops projecting from the scaffold core. The experimentally solved 3.56-Å resolution crystal structure of one designed loop matches closely the designed hairpin structure, showing the computational design of a backbone extension onto a synthetic protein core without the use of backbone fragments from known structures. Two other loop designs were not clearly resolved in the crystal structures, and one loop appeared to be in an incorrect conformation. We have also shown that the repeat unit can accommodate whole-domain insertions by inserting a domain into one of the designed loops.


Asunto(s)
Péptidos/química , Conformación Proteica , Proteínas/química , Secuencias Repetitivas de Aminoácido/genética , Secuencia de Aminoácidos/genética , Cristalografía por Rayos X , Péptidos/genética , Ingeniería de Proteínas , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas/genética
4.
Biochimie ; 219: 12-20, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37952891

RESUMEN

Malonyl-Coenzyme A Reductase (MCR) in Chloroflexus aurantiacus, a characteristic enzyme of the 3-hydroxypropionate (3-HP) cycle, catalyses the reduction of malonyl-CoA to 3-HP. MCR is a bi-functional enzyme; in the first step, malonyl-CoA is reduced to the free intermediate malonate semialdehyde by the C-terminal region of MCR, and this is further reduced to 3-HP by the N-terminal region of MCR. Here we present the crystal structures of both N-terminal and C-terminal regions of the MCR from C. aurantiacus. A catalytic mechanism is suggested by ligand and substrate bound structures, and structural and kinetic studies of MCR variants. Both MCR structures reveal one catalytic, and one non-catalytic SDR (short chain dehydrogenase/reductase) domain. C-terminal MCR has a lid domain which undergoes a conformational change and controls the reaction. In the proposed mechanism of the C-terminal MCR, the conversion of malonyl-CoA to malonate semialdehyde is based on the reduction of malonyl-CoA by NADPH, followed by the decomposition of the hemithioacetal to produce malonate semialdehyde and coenzyme A. Conserved arginines, Arg734 and Arg773 are proposed to play key roles in the mechanism and conserved Ser719, and Tyr737 are other essential residues forming an oxyanion hole for the substrate intermediates.


Asunto(s)
Chloroflexus , Malonil Coenzima A , Oxidorreductasas , Cinética , Oxidorreductasas/metabolismo , Malonil Coenzima A/metabolismo , Malonatos
5.
Int J Biol Macromol ; 269(Pt 1): 131923, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697437

RESUMEN

Recent advances in mass spectrometry (MS) yielding sensitive and accurate measurements along with developments in software tools have enabled the characterization of complex systems routinely. Thus, structural proteomics and cross-linking mass spectrometry (XL-MS) have become a useful method for structural modeling of protein complexes. Here, we utilized commonly used XL-MS software tools to elucidate the protein interactions within a membrane protein complex containing FtsH, HflK, and HflC, over-expressed in E. coli. The MS data were processed using MaxLynx, MeroX, MS Annika, xiSEARCH, and XlinkX software tools. The number of identified inter- and intra-protein cross-links varied among software. Each interaction was manually checked using the raw MS and MS/MS data and distance restraints to verify inter- and intra-protein cross-links. A total of 37 inter-protein and 148 intra-protein cross-links were determined in the FtsH-HflK-HflC complex. The 59 of them were new interactions on the lacking region of recently published structures. These newly identified interactions, when combined with molecular docking and structural modeling, present opportunities for further investigation. The results provide valuable information regarding the complex structure and function to decipher the intricate molecular mechanisms underlying the FtsH-HflK-HflC complex.


Asunto(s)
Proteínas de la Membrana , Proteómica , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteómica/métodos , Simulación del Acoplamiento Molecular , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Escherichia coli/metabolismo , Programas Informáticos , Modelos Moleculares
6.
Acta Crystallogr D Struct Biol ; 80(Pt 8): 599-604, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984904

RESUMEN

The Azotobacter vinelandii FeSII protein forms an oxygen-resistant complex with the nitrogenase MoFe and Fe proteins. FeSII is an adrenodoxin-type ferredoxin that forms a dimer in solution. Previously, the crystal structure was solved [Schlesier et al. (2016), J. Am. Chem. Soc. 138, 239-247] with five copies in the asymmetric unit. One copy is a normal adrenodoxin domain that forms a dimer with its crystallographic symmetry mate. The other four copies are in an `open' conformation with a loop flipped out exposing the 2Fe-2S cluster. The open and closed conformations were interpreted as oxidized and reduced, respectively, and the large conformational change in the open configuration allowed binding to nitrogenase. Here, the structure of FeSII was independently solved in the same crystal form. The positioning of the atoms in the unit cell is similar to the earlier report. However, the interpretation of the structure is different. The `open' conformation is interpreted as the product of a crystallization-induced domain swap. The 2Fe-2S cluster is not exposed to solvent, but in the crystal its interacting helix is replaced by the same helix residues from a crystal symmetry mate. The domain swap is complicated, as it is unusual in being in the middle of the protein rather than at a terminus, and it creates arrangements of molecules that can be interpreted in multiple ways. It is also cautioned that crystal structures should be interpreted in terms of the contents of the entire crystal rather than of one asymmetric unit.


Asunto(s)
Azotobacter vinelandii , Proteínas Bacterianas , Modelos Moleculares , Azotobacter vinelandii/química , Cristalografía por Rayos X , Proteínas Bacterianas/química , Conformación Proteica , Dominios Proteicos , Ferredoxinas/química , Multimerización de Proteína , Proteínas Hierro-Azufre/química
7.
Arch Biochem Biophys ; 537(2): 233-42, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23911721

RESUMEN

Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the proton-coupled four-electron reduction of biliverdin IXα's two vinyl groups to produce phycocyanobilin, an essential chromophore for phytochromes, cyanobacteriochromes and phycobiliproteins. Previous site directed mutagenesis studies indicated that the fully conserved residue His74 plays a critical role in the H-bonding network that permits proton transfer. Here, we exploit X-ray crystallography, enzymology and molecular dynamics simulations to understand the functional role of this invariant histidine. The structures of the H74A, H74E and H74Q variants of PcyA reveal that a "conserved" buried water molecule that bridges His74 and catalytically essential His88 is not required for activity. Despite distinct conformations of Glu74 and Gln74 in the H74E and H74Q variants, both retain reasonable activity while the H74A variant is inactive, suggesting smaller residues may generate cavities that increase flexibility, thereby reducing enzymatic activity. Molecular dynamic simulations further reveal that the crucial active site residue Asp105 is more dynamic in H74A compared to wild-type PcyA and the two other His74 variants, supporting the conclusion that the Ala74 mutation has increased the flexibility of the active site.


Asunto(s)
Pigmentos Biliares/química , Histidina/química , Modelos Químicos , Modelos Moleculares , Oxidorreductasas/química , Oxidorreductasas/ultraestructura , Secuencia de Aminoácidos , Simulación por Computador , Secuencia Conservada , Activación Enzimática , Datos de Secuencia Molecular , Relación Estructura-Actividad , Especificidad por Sustrato
8.
Methods Mol Biol ; 2247: 3-16, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33301109

RESUMEN

Membrane proteins constitute an important class of proteins for medical, pharmaceutical, and biotechnological reasons. Understanding the structure and function of membrane proteins and their complexes is of key importance, but the progress in this area is slow because of the difficulties to produce them in sufficient quality and quantity. Overexpression of membrane proteins is often restricted by the limited capability of translocation systems to integrate proteins into the membrane and to fold them properly. Purification of membrane proteins requires their isolation from the membrane, which is a further challenge. The choice of expression system, detergents, and purification tags is therefore an important decision. Here, we present a protocol for expression in bacteria and isolation of a seven-subunit membrane protein complex, the bacterial holo-translocon, which can serve as a starting point for the production of other membrane protein complexes for structural and functional studies.


Asunto(s)
Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/aislamiento & purificación , Complejos Multiproteicos/biosíntesis , Complejos Multiproteicos/aislamiento & purificación , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/aislamiento & purificación , Proteínas Recombinantes , Cromatografía de Afinidad , Cromatografía en Gel , Escherichia coli/genética , Expresión Génica , Proteínas de la Membrana/química , Plásmidos , Regiones Promotoras Genéticas , Multimerización de Proteína , Subunidades de Proteína/química
9.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 11): 407-411, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34726179

RESUMEN

Azotobacter vinelandii is a model diazotroph and is the source of most nitrogenase material for structural and biochemical work. Azotobacter can grow in above-atmospheric levels of oxygen, despite the sensitivity of nitrogenase activity to oxygen. Azotobacter has many iron-sulfur proteins in its genome, which were identified as far back as the 1960s and probably play roles in the complex redox chemistry that Azotobacter must maintain when fixing nitrogen. Here, the 2.1 Šresolution crystal structure of the [2Fe-2S] protein I (Shethna protein I) from A. vinelandii is presented, revealing a homodimer with the [2Fe-2S] cluster coordinated by the surrounding conserved cysteine residues. It is similar to the structure of the thioredoxin-like [2Fe-2S] protein from Aquifex aeolicus, including the positions of the [2Fe-2S] clusters and conserved cysteine residues. The structure of Shethna protein I will provide information for understanding its function in relation to nitrogen fixation and its evolutionary relationships to other ferredoxins.


Asunto(s)
Azotobacter vinelandii , Proteínas Hierro-Azufre , Azotobacter vinelandii/química , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Cristalografía por Rayos X , Ferredoxinas/química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Nitrogenasa/química , Nitrogenasa/metabolismo
10.
Sci Rep ; 7(1): 7234, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28775283

RESUMEN

Microorganisms use carboxylase enzymes to form new carbon-carbon bonds by introducing carbon dioxide gas (CO2) or its hydrated form, bicarbonate (HCO3-), into target molecules. Acetone carboxylases (ACs) catalyze the conversion of substrates acetone and HCO3- to form the product acetoacetate. Many bicarbonate-incorporating carboxylases rely on the organic cofactor biotin for the activation of bicarbonate. ACs contain metal ions but not organic cofactors, and use ATP to activate substrates through phosphorylation. How the enzyme coordinates these phosphorylation events and new C-C bond formation in the absence of biotin has remained a mystery since these enzymes were discovered. The first structural rationale for acetone carboxylation is presented here, focusing on the 360 kDa (αßγ)2 heterohexameric AC from Xanthobacter autotrophicus in the ligand-free, AMP-bound, and acetate coordinated states. These structures suggest successive steps in a catalytic cycle revealing that AC undergoes large conformational changes coupled to substrate activation by ATP to perform C-C bond ligation at a distant Mn center. These results illustrate a new chemical strategy for the conversion of CO2 into biomass, a process of great significance to the global carbon cycle.


Asunto(s)
Acetona/química , Adenosina Trifosfato/química , Sitios de Unión , Dióxido de Carbono/química , Carboxiliasas/química , Carboxiliasas/genética , Dominio Catalítico , Ligandos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
11.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 10): 1341-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26457528

RESUMEN

The dual-function fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) in cyanobacteria carries out two activities in the Calvin cycle. Structures of this enzyme from the cyanobacterium Synechocystis sp. PCC 6803 exist, but only with adenosine monophosphate (AMP) or fructose-1,6-bisphosphate and AMP bound. The mechanisms which control both selectivity between the two sugars and the structural mechanisms for redox control are still unresolved. Here, the structure of the dual-function FBP/SBPase from the thermophilic cyanobacterium Thermosynechococcus elongatus is presented with sedoheptulose-7-phosphate bound and in the absence of AMP. The structure is globally very similar to the Synechocystis sp. PCC 6803 enzyme, but highlights features of selectivity at the active site and loop ordering at the AMP-binding site. Understanding the selectivity and control of this enzyme is critical for understanding the Calvin cycle in cyanobacteria and for possible biotechnological application in plants.


Asunto(s)
Cianobacterias/enzimología , Fructosa-Bifosfatasa/química , Monoéster Fosfórico Hidrolasas/química , Fosfatos de Azúcar/metabolismo , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Datos de Secuencia Molecular , Oxidación-Reducción , Synechocystis/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA