Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36838052

RESUMEN

In this study, we propose a solution for realization of surface emitting, 2D array of visible light laser diodes based on AlInGaN semiconductors. The presented system consists of a horizontal cavity lasing section adjoined with beam deflecting section in the form of 45° inclined planes. They are placed in the close vicinity of etched vertical cavity mirrors that are fabricated by Reactive Ion Beam Etching. The principle of operation of this device is confirmed experimentally; however, we observed an unexpected angular distribution of reflected rays for the angles lower than 45°, which we associate with the light diffraction and interference between the vertical and deflecting mirrors. The presented solution offers the maturity of edge-emitting laser technology combined with versatility of surface-emitting lasers, including on-wafer testing of emitters and addressability of single light sources.

2.
ACS Sens ; 7(10): 3094-3101, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36121758

RESUMEN

The gas sensing properties of graphene back-gated field-effect transistor (GFET) sensors toward acetonitrile, tetrahydrofuran, and chloroform vapors were investigated with the focus on unfolding possible gas detection mechanisms. The FET configuration of the sensor device enabled gate voltage tuning for enhanced measurements of changes in DC electrical characteristics. Electrical measurements were combined with a fluctuation-enhanced sensing methodology and intermittent UV irradiation. Distinctly different features in 1/f noise spectra for the organic gases measured under UV irradiation and in the dark were observed. The most intense response observed for tetrahydrofuran prompted the decomposition of the DC characteristic, revealing the photoconductive and photogating effect occurring in the graphene channel with the dominance of the latter. Our observations shed light on understanding surface processes at the interface between graphene and volatile organic compounds for graphene-based sensors in ambient conditions that yield enhanced sensitivity and selectivity.

3.
Materials (Basel) ; 13(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957632

RESUMEN

Electrical and noise properties of graphene contacts to AlGaN/GaN heterostructures were studied experimentally. It was found that graphene on AlGaN forms a high-quality Schottky barrier with the barrier height dependent on the bias. The apparent barrier heights for this kind of Schottky diode were found to be relatively high, varying within the range of φb = (1.0-1.26) eV. AlGaN/GaN fin-shaped field-effect transistors (finFETs) with a graphene gate were fabricated and studied. These devices demonstrated ~8 order of magnitude on/off ratio, subthreshold slope of ~1.3, and low subthreshold current in the sub-picoamperes range. The effective trap density responsible for the 1/f low-frequency noise was found within the range of (1-5) · 1019 eV-1 cm-3. These values are of the same order of magnitude as reported earlier and in AlGaN/GaN transistors with Ni/Au Schottky gate studied as a reference in the current study. A good quality of graphene/AlGaN Schottky barrier diodes and AlGaN/GaN transistors opens the way for transparent GaN-based electronics and GaN-based devices exploring vertical electron transport in graphene.

4.
Opt Express ; 14(21): 9664-78, 2006 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19529357

RESUMEN

The modification of classical Twyman-Green interferometer by implementation of Liquid Crystal on Silicon (LCoS) spatial light modulator as the reference mirror allows introducing arbitrary phase in the reference wavefront. This special capability is applied to facilitate the measurements of shape and deformation of active microelements and extend the range of such measurement. This can be realized by introducing linear or circular spatial carrier frequency into interferogram or by compensating object wavefront deformation. Moreover LCoS display can be used as an accurate phase shifter if the proper calibration is introduced. The analysis of sources of measurement errors introduced by LCoS display is presented and the ways of their elimination are discussed. The possible application of LCoS based laser interferometer for initial microelement shape determination and transient deformation monitoring as well as active reference phase modification are shown and experimentally confirmed during silicon micromembranes studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA