RESUMEN
In response to a strong El Niño, fires in Indonesia during September and October 2015 released a large amount of carbon dioxide and created a massive regional smoke cloud that severely degraded air quality in many urban centers across Southeast Asia. Although several lines of evidence indicate that peat burning was a dominant contributor to emissions in the region, El Niño-induced drought is also known to increase deforestation fires and agricultural waste burning in plantations. As a result, uncertainties remain with respect to partitioning emissions among different ecosystem and fire types. Here we measured the radiocarbon content (14C) of carbonaceous aerosol samples collected in Singapore from September 2014 through October 2015, with the aim of identifying the age and origin of fire-emitted fine particulate matter (particulate matter with an aerodynamic diameter less than or equal to 2.5 µm). The Δ14C of fire-emitted aerosol was -76 ± 51, corresponding to a carbon pool of combusted organic matter with a mean turnover time of 800 ± 420 y. Our observations indicated that smoke plumes reaching Singapore originated primarily from peat burning (â¼85%), and not from deforestation fires or waste burning. Atmospheric transport modeling confirmed that fires in Sumatra and Borneo were dominant contributors to elevated PM2.5 in Singapore during the fire season. The mean age of the carbonaceous aerosol, which predates the Industrial Revolution, highlights the importance of improving peatland fire management during future El Niño events for meeting climate mitigation and air quality commitments.
RESUMEN
Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage.
Asunto(s)
Dióxido de Carbono/química , Modelos Teóricos , Lluvia , Estaciones del Año , Clima Tropical , Humedales , Asia SudorientalRESUMEN
Emission of CO2 from tropical peatlands is an important component of the global carbon budget. Over days to months, these fluxes are largely controlled by water table depth. However, the diurnal cycle is less well understood, in part, because most measurements have been collected daily at midday. We used an automated chamber system to make hourly measurements of peat surface CO2 emissions from chambers root-cut to 30 cm. We then used these data to disentangle the relationship between temperature, water table and heterotrophic respiration (Rhet ). We made two central observations. First, we found strong diurnal cycles in CO2 flux and near-surface peat temperature (<10 cm depth), both peaking at midday. The magnitude of diurnal oscillations was strongly influenced by shading and water table depth, highlighting the limitations of relying on daytime measurements and/or a single correction factor to remove daytime bias in flux measurements. Second, we found mean daily Rhet had a strong linear relationship to the depth of the water table, and under flooded conditions, Rhet was small and constant. We used this relationship between Rhet and water table depth to estimate carbon export from both Rhet and dissolved organic carbon over the course of a year based on water table records. Rhet dominates annual carbon export, demonstrating the potential for peatland drainage to increase regional CO2 emissions. Finally, we discuss an apparent incompatibility between hourly and daily average observations of CO2 flux, water table and temperature: water table and daily average flux data suggest that CO2 is produced across the entire unsaturated peat profile, whereas temperature and hourly flux data appear to suggest that CO2 fluxes are controlled by very near surface peat. We explore how temperature-, moisture- and gas transport-related mechanisms could cause mean CO2 emissions to increase linearly with water table depth and also have a large diurnal cycle.
Asunto(s)
Dióxido de Carbono , Agua Subterránea , Metano , Suelo , TemperaturaRESUMEN
Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.
RESUMEN
Atmospheric methane (CH(4)) increased through much of the twentieth century, but this trend gradually weakened until a stable state was temporarily reached around the turn of the millennium, after which levels increased once more. The reasons for the slowdown are incompletely understood, with past work identifying changes in fossil fuel, wetland and agricultural sources and hydroxyl (OH) sinks as important causal factors. Here we show that the late-twentieth-century changes in the CH(4) growth rates are best explained by reduced microbial sources in the Northern Hemisphere. Our results, based on synchronous time series of atmospheric CH(4) mixing and (13)C/(12)C ratios and a two-box atmospheric model, indicate that the evolution of the mixing ratio requires no significant change in Southern Hemisphere sources between 1984 and 2005. Observed changes in the interhemispheric difference of (13)C effectively exclude reduced fossil fuel emissions as the primary cause of the slowdown. The (13)C observations are consistent with long-term reductions in agricultural emissions or another microbial source within the Northern Hemisphere. Approximately half (51 ± 18%) of the decrease in Northern Hemisphere CH(4) emissions can be explained by reduced emissions from rice agriculture in Asia over the past three decades associated with increases in fertilizer application and reductions in water use.