RESUMEN
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Asunto(s)
Neoplasias , Humanos , Carcinogénesis , Microbiota , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Obesidad/complicaciones , Calidad de VidaRESUMEN
Preventing rapid evolution of herbivores to plant traits that confer resistance is an area of active research for applied entomologists. The subfield of insect resistance management (IRM) uses elements of population genetics and ecology to prevent increases in the frequency of virulent (i.e. resistant) sub-populations of an insect pest. Efforts to delay such an increase include using highly lethal toxins (i.e., a high dose), combining multiple resistance traits in one cultivar (i.e., pyramids), and using susceptible plants (i.e. a refuge) within or near plantings of the resistant crop. Even if fully implemented, theoretical models suggest that IRM plans for asexually-reproducing insects (e.g. aphids) cannot limit the frequency of resistance to provide sustainable use of a pest-resistant cultivar. We discuss how feeding by conspecifics aphids induces susceptibility such that a "within plant" refuge is created, allowing both virulent and avirulent (i.e. susceptible) populations to persist. We use the soybean aphid (Aphis glycines Matsumura), and the rapid occurrence of virulence in the US to resistant cultivars of soybean (Glycine max). We describe how feeding by A. glycines on soybeans alters the quality of the plant as a host. These systemic changes to the plants' physiology allow avirulent A. glycines to thrive on resistant cultivars. We explore how the induction of susceptibility by a herbivore can slow an increase in the frequency of virulent populations to resistant host plants. We suggest that a within plant refuge, combined with standard IRM practices, can allow for sustainable use of plant resistance to asexually-reproducing insect pests.
Asunto(s)
Áfidos/fisiología , Evolución Biológica , Glycine max/fisiología , Herbivoria , Animales , Antibiosis , Áfidos/genética , América del Norte , Glycine max/genéticaRESUMEN
The concept of a trade-off has long played a prominent role in understanding the evolution of organismal interactions such as mutualism, parasitism, and competition. Given the complexity inherent to interactions between different evolutionary entities, ecological factors may especially limit the power of trade-off models to predict evolutionary change. Here, we use four case studies to examine the importance of ecological context for the study of trade-offs in organismal interactions: (1) resource-based mutualisms, (2) parasite transmission and virulence, (3) plant biological invasions, and (4) host range evolution in parasites and parasitoids. In the first two case studies, mechanistic trade-off models have long provided a strong theoretical framework but face the challenge of testing assumptions under ecologically realistic conditions. Work under the second two case studies often has a strong ecological grounding, but faces challenges in identifying or quantifying the underlying genetic mechanism of the trade-off. Attention is given to recent studies that have bridged the gap between evolutionary mechanism and ecological realism. Finally, we explore the distinction between ecological factors that mask the underlying evolutionary trade-offs, and factors that actually change the trade-off relationship between fitness-related traits important to organismal interactions.