Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(44): e2209976119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279473

RESUMEN

IFNγ is traditionally known as a proinflammatory cytokine with diverse roles in antimicrobial and antitumor immunity. Yet, findings regarding its sources and functions during the regeneration process following a sterile injury are conflicting. Here, we show that natural killer (NK) cells are the main source of IFNγ in regenerating muscle. Beyond this cell population, IFNγ production is limited to a small population of T cells. We further show that NK cells do not play a major role in muscle regeneration following an acute injury or in dystrophic mice. Surprisingly, the absence of IFNγ per se also has no effect on muscle regeneration following an acute injury. However, the role of IFNγ is partially unmasked when TNFα is also neutralized, suggesting a compensatory mechanism. Using transgenic mice, we showed that conditional inhibition of IFNGR1 signaling in muscle stem cells or fibro-adipogenic progenitors does not play a major role in muscle regeneration. In contrast to common belief, we found that IFNγ is not present in the early inflammatory phase of the regeneration process but rather peaks when macrophages are acquiring an anti-inflammatory phenotype. Further transcriptomic analysis suggests that IFNγ cooperates with TNFα to regulate the transition of macrophages from pro- to anti-inflammatory states. The absence of the cooperative effect of these cytokines on macrophages, however, does not result in significant regeneration impairment likely due to the presence of other compensatory mechanisms. Our findings support the arising view of IFNγ as a pleiotropic inflammatory regulator rather than an inducer of the inflammatory response.


Asunto(s)
Macrófagos , Factor de Necrosis Tumoral alfa , Ratones , Animales , Interferón gamma , Citocinas , Regeneración , Antiinflamatorios , Músculos
2.
J Biol Chem ; 290(43): 26303-13, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26336103

RESUMEN

Although human pluripotent stem cells (hPSCs) provide valuable sources for regenerative medicine, their applicability is dependent on obtaining both suitable up-scaled and cost effective cultures. The Rho-associated kinase (ROCK) inhibitor Y-27632 permits hPSC survival upon dissociation; however, cloning efficiency is often still low. Here we have shown that pioglitazone, a selective peroxisome proliferative-activated receptor-γ agonist, along with Y-27632 synergistically diminished dissociation-induced apoptosis and increased cloning efficiency (2-3-fold versus Y-27632) without affecting pluripotency of hPSCs. Pioglitazone exerted its positive effect by inhibition of glycogen synthase kinase (GSK3) activity and enhancement of membranous ß-catenin and E-cadherin proteins. These effects were reversed by GW-9662, an irreversible peroxisome proliferative-activated receptor-γ antagonist. This novel setting provided a step toward hPSC manipulation and its biomedical applications.


Asunto(s)
Células Clonales , Receptores Activados del Proliferador del Peroxisoma/agonistas , Células Madre Pluripotentes/citología , Quinasas Asociadas a rho/antagonistas & inhibidores , Amidas/farmacología , Humanos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Pioglitazona , Piridinas/farmacología , Transducción de Señal , Tiazolidinedionas/farmacología , Quinasas Asociadas a rho/metabolismo
3.
Nat Commun ; 14(1): 8273, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092736

RESUMEN

Adult tissue-resident macrophages (RMs) are either maintained by blood monocytes or through self-renewal. While the presence of a nurturing niche is likely crucial to support the survival and function of self-renewing RMs, evidence regarding its nature is limited. Here, we identify fibro-adipogenic progenitors (FAPs) as the main source of colony-stimulating factor 1 (CSF1) in resting skeletal muscle. Using parabiosis in combination with FAP-deficient transgenic mice (PdgfrαCreERT2 × DTA) or mice lacking FAP-derived CSF1 (PdgfrαCreERT2 × Csf1flox/null), we show that local CSF1 from FAPs is required for the survival of both TIM4- monocyte-derived and TIM4+ self-renewing RMs in adult skeletal muscle. The spatial distribution and number of TIM4+ RMs coincide with those of dipeptidyl peptidase IV (DPPIV)+ FAPs, suggesting their role as CSF1-producing niche cells for self-renewing RMs. This finding identifies opportunities to precisely manipulate the function of self-renewing RMs in situ to further unravel their role in health and disease.


Asunto(s)
Dipeptidil Peptidasa 4 , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Ratones , Animales , Diferenciación Celular/fisiología , Dipeptidil Peptidasa 4/genética , Adipogénesis , Músculo Esquelético , Ratones Transgénicos , Macrófagos
4.
Dev Cell ; 58(6): 489-505.e7, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36898377

RESUMEN

Loss of muscle mass is a common manifestation of chronic disease. We find the canonical Wnt pathway to be activated in mesenchymal progenitors (MPs) from cancer-induced cachectic mouse muscle. Next, we induce ß-catenin transcriptional activity in murine MPs. As a result, we observe expansion of MPs in the absence of tissue damage, as well as rapid loss of muscle mass. Because MPs are present throughout the organism, we use spatially restricted CRE activation and show that the induction of tissue-resident MP activation is sufficient to induce muscle atrophy. We further identify increased expression of stromal NOGGIN and ACTIVIN-A as key drivers of atrophic processes in myofibers, and we verify their expression by MPs in cachectic muscle. Finally, we show that blocking ACTIVIN-A rescues the mass loss phenotype triggered by ß-catenin activation in MPs, confirming its key functional role and strengthening the rationale for targeting this pathway in chronic disease.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Ratones , Animales , beta Catenina/metabolismo , Activinas , Músculos/metabolismo
5.
Sci Transl Med ; 14(651): eabg7504, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35767650

RESUMEN

The role of tissue-resident macrophages during tissue regeneration or fibrosis is not well understood, mainly due to the lack of a specific marker for their identification. Here, we identified three populations of skeletal muscle-resident myelomonocytic cells: a population of macrophages positive for lymphatic vessel endothelial receptor 1 (LYVE1) and T cell membrane protein 4 (TIM4 or TIMD4), a population of LYVE1-TIM4- macrophages, and a population of cells likely representing dendritic cells that were positive for CD11C and major histocompatibility complex class II (MHCII). Using a combination of parabiosis and lineage-tracing experiments, we found that, at steady state, TIM4- macrophages were replenished from the blood, whereas TIM4+ macrophages locally self-renewed [self-renewing resident macrophages (SRRMs)]. We further showed that Timd4 could be reliably used to distinguish SRRMs from damage-induced infiltrating macrophages. Using a colony-stimulating factor 1 receptor (CSF1R) inhibition/withdrawal approach to specifically deplete SRRMs, we found that SRRMs provided a nonredundant function in clearing damage-induced apoptotic cells early after extensive acute injury. In contrast, in chronic mild injury as seen in a mouse model of Duchenne muscular dystrophy, depletion of both TIM4-- and TIM4+-resident macrophage populations through long-term CSF1R inhibition changed muscle fiber composition from damage-sensitive glycolytic fibers toward damage-resistant glycolytic-oxidative fibers, thereby protecting muscle against contraction-induced injury both ex vivo and in vivo. This work reveals a previously unidentified role for resident macrophages in modulating tissue metabolism and may have therapeutic potential given the ongoing clinical testing of CSF1R inhibitors.


Asunto(s)
Macrófagos , Músculo Esquelético , Distrofias Musculares , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Macrófagos/metabolismo , Macrófagos/patología , Proteínas de la Membrana/metabolismo , Ratones , Monocitos/metabolismo , Monocitos/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA