Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(10): 2359-2374.e18, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653240

RESUMEN

Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Aminoácidos de Cadena Ramificada , Resistencia a la Insulina , Mitocondrias , Nitrógeno , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Ratones , Nitrógeno/metabolismo , Mitocondrias/metabolismo , Masculino , Humanos , Metabolismo Energético , Ratones Endogámicos C57BL , Estrés Oxidativo , Insulina/metabolismo , Dieta Alta en Grasa , Adipocitos Marrones/metabolismo , Transducción de Señal
2.
Cell ; 182(3): 563-577.e20, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32615086

RESUMEN

Adipose tissues dynamically remodel their cellular composition in response to external cues by stimulating beige adipocyte biogenesis; however, the developmental origin and pathways regulating this process remain insufficiently understood owing to adipose tissue heterogeneity. Here, we employed single-cell RNA-seq and identified a unique subset of adipocyte progenitor cells (APCs) that possessed the cell-intrinsic plasticity to give rise to beige fat. This beige APC population is proliferative and marked by cell-surface proteins, including PDGFRα, Sca1, and CD81. Notably, CD81 is not only a beige APC marker but also required for de novo beige fat biogenesis following cold exposure. CD81 forms a complex with αV/ß1 and αV/ß5 integrins and mediates the activation of integrin-FAK signaling in response to irisin. Importantly, CD81 loss causes diet-induced obesity, insulin resistance, and adipose tissue inflammation. These results suggest that CD81 functions as a key sensor of external inputs and controls beige APC proliferation and whole-body energy homeostasis.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo Beige/metabolismo , Metabolismo Energético/genética , Quinasa 1 de Adhesión Focal/metabolismo , Transducción de Señal/genética , Células Madre/metabolismo , Tetraspanina 28/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Beige/citología , Tejido Adiposo Beige/crecimiento & desarrollo , Tejido Adiposo Blanco/metabolismo , Adulto , Animales , Ataxina-1/metabolismo , Femenino , Fibronectinas/farmacología , Quinasa 1 de Adhesión Focal/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Resistencia a la Insulina/genética , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis de la Célula Individual , Células Madre/citología , Tetraspanina 28/genética
3.
Nat Rev Mol Cell Biol ; 22(6): 393-409, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33758402

RESUMEN

Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.


Asunto(s)
Proteína Desacopladora 1/metabolismo , Adipocitos Beige/metabolismo , Adipocitos Marrones/metabolismo , Animales , Metabolismo Energético , Humanos , Metabolismo de los Lípidos , Termogénesis/genética , Termogénesis/fisiología , Proteína Desacopladora 1/genética
4.
Cell ; 163(3): 643-55, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496606

RESUMEN

Thermogenic brown and beige adipose tissues dissipate chemical energy as heat, and their thermogenic activities can combat obesity and diabetes. Herein the functional adaptations to cold of brown and beige adipose depots are examined using quantitative mitochondrial proteomics. We identify arginine/creatine metabolism as a beige adipose signature and demonstrate that creatine enhances respiration in beige-fat mitochondria when ADP is limiting. In murine beige fat, cold exposure stimulates mitochondrial creatine kinase activity and induces coordinated expression of genes associated with creatine metabolism. Pharmacological reduction of creatine levels decreases whole-body energy expenditure after administration of a ß3-agonist and reduces beige and brown adipose metabolic rate. Genes of creatine metabolism are compensatorily induced when UCP1-dependent thermogenesis is ablated, and creatine reduction in Ucp1-deficient mice reduces core body temperature. These findings link a futile cycle of creatine metabolism to adipose tissue energy expenditure and thermal homeostasis. PAPERCLIP.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Creatina/metabolismo , Termogénesis , Adenosina Difosfato/metabolismo , Tejido Adiposo/metabolismo , Animales , Metabolismo Energético , Homeostasis , Humanos , Canales Iónicos/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Obesidad/metabolismo , Proteína Desacopladora 1
5.
Cell ; 156(1-2): 304-16, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439384

RESUMEN

A clear relationship exists between visceral obesity and type 2 diabetes, whereas subcutaneous obesity is comparatively benign. Here, we show that adipocyte-specific deletion of the coregulatory protein PRDM16 caused minimal effects on classical brown fat but markedly inhibited beige adipocyte function in subcutaneous fat following cold exposure or ß3-agonist treatment. These animals developed obesity on a high-fat diet, with severe insulin resistance and hepatic steatosis. They also showed altered fat distribution with markedly increased subcutaneous adiposity. Subcutaneous adipose tissue in mutant mice acquired many key properties of visceral fat, including decreased thermogenic and increased inflammatory gene expression and increased macrophage accumulation. Transplantation of subcutaneous fat into mice with diet-induced obesity showed a loss of metabolic benefit when tissues were derived from PRDM16 mutant animals. These findings indicate that PRDM16 and beige adipocytes are required for the "browning" of white fat and the healthful effects of subcutaneous adipose tissue.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo/metabolismo , Proteínas de Unión al ADN/metabolismo , Obesidad/metabolismo , Factores de Transcripción/metabolismo , Adipocitos/metabolismo , Animales , Proteínas de Unión al ADN/genética , Dieta Alta en Grasa , Resistencia a la Insulina , Ratones , Ratones Noqueados , Factores de Transcripción/genética
6.
Nat Rev Mol Cell Biol ; 17(8): 480-95, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27251423

RESUMEN

White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes.


Asunto(s)
Adipocitos Beige/citología , Adipocitos Marrones/citología , Linaje de la Célula/genética , Epigénesis Genética , Transcripción Genética , Adipocitos Beige/fisiología , Adipocitos Marrones/fisiología , Animales , Humanos
7.
Nature ; 609(7925): 151-158, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978186

RESUMEN

Compelling evidence shows that brown and beige adipose tissue are protective against metabolic diseases1,2. PR domain-containing 16 (PRDM16) is a dominant activator of the biogenesis of beige adipocytes by forming a complex with transcriptional and epigenetic factors and is therefore an attractive target for improving metabolic health3-8. However, a lack of knowledge surrounding the regulation of PRDM16 protein expression hampered us from selectively targeting this transcriptional pathway. Here we identify CUL2-APPBP2 as the ubiquitin E3 ligase that determines PRDM16 protein stability by catalysing its polyubiquitination. Inhibition of CUL2-APPBP2 sufficiently extended the half-life of PRDM16 protein and promoted beige adipocyte biogenesis. By contrast, elevated CUL2-APPBP2 expression was found in aged adipose tissues and repressed adipocyte thermogenesis by degrading PRDM16 protein. Importantly, extended PRDM16 protein stability by adipocyte-specific deletion of CUL2-APPBP2 counteracted diet-induced obesity, glucose intolerance, insulin resistance and dyslipidaemia in mice. These results offer a cell-autonomous route to selectively activate the PRDM16 pathway in adipose tissues.


Asunto(s)
Tejido Adiposo Beige , Proteínas de Unión al ADN , Factores de Transcripción , Animales , Ratones , Adipocitos Beige/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Proteínas Cullin , Proteínas de Unión al ADN/metabolismo , Dislipidemias , Intolerancia a la Glucosa , Resistencia a la Insulina , Obesidad , Estabilidad Proteica , Termogénesis/fisiología , Factores de Transcripción/metabolismo , Ubiquitinación
8.
Proc Natl Acad Sci U S A ; 120(9): e2216810120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812201

RESUMEN

Mitochondria provide essential metabolites and adenosine triphosphate (ATP) for the regulation of energy homeostasis. For instance, liver mitochondria are a vital source of gluconeogenic precursors under a fasted state. However, the regulatory mechanisms at the level of mitochondrial membrane transport are not fully understood. Here, we report that a liver-specific mitochondrial inner-membrane carrier SLC25A47 is required for hepatic gluconeogenesis and energy homeostasis. Genome-wide association studies found significant associations between SLC25A47 and fasting glucose, HbA1c, and cholesterol levels in humans. In mice, we demonstrated that liver-specific depletion of SLC25A47 impaired hepatic gluconeogenesis selectively from lactate, while significantly enhancing whole-body energy expenditure and the hepatic expression of FGF21. These metabolic changes were not a consequence of general liver dysfunction because acute SLC25A47 depletion in adult mice was sufficient to enhance hepatic FGF21 production, pyruvate tolerance, and insulin tolerance independent of liver damage and mitochondrial dysfunction. Mechanistically, SLC25A47 depletion leads to impaired hepatic pyruvate flux and malate accumulation in the mitochondria, thereby restricting hepatic gluconeogenesis. Together, the present study identified a crucial node in the liver mitochondria that regulates fasting-induced gluconeogenesis and energy homeostasis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Gluconeogénesis , Humanos , Ratones , Animales , Gluconeogénesis/fisiología , Glucosa/metabolismo , Hígado/metabolismo , Metabolismo Energético/fisiología , Piruvatos/metabolismo
9.
Nature ; 565(7738): 180-185, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30568302

RESUMEN

Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of ß-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival.


Asunto(s)
Tejido Adiposo Beige/citología , Tejido Adiposo Beige/metabolismo , Frío , Respuesta al Choque por Frío , Glucólisis , Desarrollo de Músculos , Aclimatación , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Diferenciación Celular , Supervivencia Celular , Metabolismo Energético , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Homeostasis , Masculino , Ratones , Proteína MioD/metabolismo , Mioblastos/citología , Receptores Adrenérgicos beta/metabolismo
10.
Nature ; 572(7771): 614-619, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31435015

RESUMEN

Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Metabolismo Energético , Homeostasis , Proteínas Mitocondriales/metabolismo , Proteínas Transportadoras de Solutos/metabolismo , Termogénesis , Tejido Adiposo Pardo/citología , Animales , Frío , Intolerancia a la Glucosa/metabolismo , Humanos , Masculino , Ratones , Mitocondrias/metabolismo , Obesidad/metabolismo
12.
Nature ; 560(7716): 102-106, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022159

RESUMEN

Thermogenesis by brown and beige adipose tissue, which requires activation by external stimuli, can counter metabolic disease1. Thermogenic respiration is initiated by adipocyte lipolysis through cyclic AMP-protein kinase A signalling; this pathway has been subject to longstanding clinical investigation2-4. Here we apply a comparative metabolomics approach and identify an independent metabolic pathway that controls acute activation of adipose tissue thermogenesis in vivo. We show that substantial and selective accumulation of the tricarboxylic acid cycle intermediate succinate is a metabolic signature of adipose tissue thermogenesis upon activation by exposure to cold. Succinate accumulation occurs independently of adrenergic signalling, and is sufficient to elevate thermogenic respiration in brown adipocytes. Selective accumulation of succinate may be driven by a capacity of brown adipocytes to sequester elevated circulating succinate. Furthermore, brown adipose tissue thermogenesis can be initiated by systemic administration of succinate in mice. Succinate from the extracellular milieu is rapidly metabolized by brown adipocytes, and its oxidation by succinate dehydrogenase is required for activation of thermogenesis. We identify a mechanism whereby succinate dehydrogenase-mediated oxidation of succinate initiates production of reactive oxygen species, and drives thermogenic respiration, whereas inhibition of succinate dehydrogenase supresses thermogenesis. Finally, we show that pharmacological elevation of circulating succinate drives UCP1-dependent thermogenesis by brown adipose tissue in vivo, which stimulates robust protection against diet-induced obesity and improves glucose tolerance. These findings reveal an unexpected mechanism for control of thermogenesis, using succinate as a systemically-derived thermogenic molecule.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Ácido Succínico/metabolismo , Termogénesis/fisiología , Adipocitos/efectos de los fármacos , Adipocitos/enzimología , Adipocitos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/enzimología , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/enzimología , Tejido Adiposo Blanco/metabolismo , Animales , Femenino , Masculino , Metabolómica , Ratones , Obesidad/metabolismo , Obesidad/prevención & control , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , Ácido Succínico/farmacología , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1/metabolismo
13.
EMBO Rep ; 21(9): e49828, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32672883

RESUMEN

While brown adipose tissue (BAT) is well-recognized for its ability to dissipate energy in the form of heat, recent studies suggest multifaced roles of BAT in the regulation of glucose and lipid homeostasis beyond stimulating thermogenesis. One of the functions involves interorgan communication with metabolic organs, such as the liver, through BAT-derived secretory factors, a.k.a., batokine. However, the identity and the roles of such mediators remain insufficiently understood. Here, we employed proteomics and transcriptomics in human thermogenic adipocytes and identified previously unappreciated batokines, including phospholipid transfer protein (PLTP). We found that increased circulating levels of PLTP, via systemic or BAT-specific overexpression, significantly improve glucose tolerance and insulin sensitivity, increased energy expenditure, and decrease the circulating levels of cholesterol, phospholipids, and sphingolipids. Such changes were accompanied by increased bile acids in the circulation, which in turn enhances glucose uptake and thermogenesis in BAT. Our data suggest that PLTP is a batokine that contributes to the regulation of systemic glucose and lipid homeostasis as a mediator of BAT-liver interorgan communication.


Asunto(s)
Tejido Adiposo Pardo , Glucosa , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Homeostasis , Humanos , Lípidos , Hígado , Termogénesis
15.
J Shoulder Elbow Surg ; 30(2): 373-386, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32599287

RESUMEN

BACKGROUND: Rotator cuff (RC) muscle atrophy and fatty infiltration (FI) are independent factors correlated with failure of attempted tendon repair in larger RC tears. However, there is no effective treatment for RC muscle atrophy and FI at this time. The recent discovery of beige adipose tissue (BAT) in adults shed light on a new avenue in treating obesity and excessive fat deposition by promoting BAT activity. The goal of this study was to define the role of intramuscular BAT in RC muscle FI and the effect of ß3-adrenergic receptor agonists in treating RC muscle FI by promoting BAT activity. MATERIALS AND METHODS: Three-month-old wild-type C57BL/6J, platelet derived growth factor receptor-alpha (PDGFRα) green fluorescent protein (GFP) reporter and uncoupling protein 1 (UCP-1) knockout mice underwent a unilateral RC injury procedure, which included supraspinatus (SS) and infraspinatus tendon resection and suprascapular nerve transection. To stimulate BAT activity, amibegron, a selective ß3-adrenergic receptor agonist, was administered to C57BL/6J mice either on the same day as surgery or 6 weeks after surgery through daily intraperitoneal injections. Gait analysis was conducted to measure forelimb function at 6 weeks or 12 weeks (in groups receiving delayed amibegron treatment) after surgery. Animals were killed humanely at 6 weeks (or 12 weeks for delayed amibegron groups) after surgery. SS muscles were harvested and analyzed histologically and biochemically. RESULTS: Histologic analysis of SS muscles from PDGFRα-GFP reporter mice showed that PDGFRα-positive fibroadipogenic progenitors in RC muscle expressed UCP-1, a hallmark of BAT during the development of FI after RC tears. Impairing BAT activity by knocking out UCP-1 resulted in more severe muscle atrophy and FI with inferior forelimb function in UCP-1 knockout mice compared with wild-type mice. Promoting BAT activity with amibegron significantly reduced muscle atrophy and FI after RC tears and improved forelimb function. Delayed treatment with amibegron reversed muscle atrophy and FI in muscle. CONCLUSIONS: Fat accumulated in muscle after RC tears possesses BAT characteristics. Impairing BAT activity results in worse RC muscle atrophy and FI. Amibegron reduces and reverses RC atrophy and FI by promoting BAT activity.


Asunto(s)
Lesiones del Manguito de los Rotadores , Manguito de los Rotadores , Tejido Adiposo/patología , Tejido Adiposo Beige , Agonistas Adrenérgicos , Animales , Ratones , Ratones Endogámicos C57BL , Atrofia Muscular/patología , Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/patología
16.
PLoS Genet ; 13(8): e1006950, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28854265

RESUMEN

Given the relevance of beige adipocytes in adult humans, a better understanding of the molecular circuits involved in beige adipocyte biogenesis has provided new insight into human brown adipocyte biology. Genetic mutations in SLC39A13/ZIP13, a member of zinc transporter family, are known to reduce adipose tissue mass in humans; however, the underlying mechanisms remains unknown. Here, we demonstrate that the Zip13-deficient mouse shows enhanced beige adipocyte biogenesis and energy expenditure, and shows ameliorated diet-induced obesity and insulin resistance. Both gain- and loss-of-function studies showed that an accumulation of the CCAAT/enhancer binding protein-ß (C/EBP-ß) protein, which cooperates with dominant transcriptional co-regulator PR domain containing 16 (PRDM16) to determine brown/beige adipocyte lineage, is essential for the enhanced adipocyte browning caused by the loss of ZIP13. Furthermore, ZIP13-mediated zinc transport is a prerequisite for degrading the C/EBP-ß protein to inhibit adipocyte browning. Thus, our data reveal an unexpected association between zinc homeostasis and beige adipocyte biogenesis, which may contribute significantly to the development of new therapies for obesity and metabolic syndrome.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/genética , Proteínas de Transporte de Catión/genética , Proteínas de Unión al ADN/genética , Obesidad/genética , Factores de Transcripción/genética , Adipocitos Beige/metabolismo , Adipogénesis/genética , Animales , Proteínas de Transporte de Catión/metabolismo , Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Dieta Alta en Grasa , Metabolismo Energético/genética , Humanos , Resistencia a la Insulina/genética , Ratones , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patología , Factores de Transcripción/metabolismo , Zinc/metabolismo
17.
Nature ; 504(7478): 163-7, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24196706

RESUMEN

Brown adipose tissue (BAT) dissipates chemical energy in the form of heat as a defence against hypothermia and obesity. Current evidence indicates that brown adipocytes arise from Myf5(+) dermotomal precursors through the action of PR domain containing protein 16 (PRDM16) transcriptional complex. However, the enzymatic component of the molecular switch that determines lineage specification of brown adipocytes remains unknown. Here we show that euchromatic histone-lysine N-methyltransferase 1 (EHMT1) is an essential BAT-enriched lysine methyltransferase in the PRDM16 transcriptional complex and controls brown adipose cell fate. Loss of EHMT1 in brown adipocytes causes a severe loss of brown fat characteristics and induces muscle differentiation in vivo through demethylation of histone 3 lysine 9 (H3K9me2 and 3) of the muscle-selective gene promoters. Conversely, EHMT1 expression positively regulates the BAT-selective thermogenic program by stabilizing the PRDM16 protein. Notably, adipose-specific deletion of EHMT1 leads to a marked reduction of BAT-mediated adaptive thermogenesis, obesity and systemic insulin resistance. These data indicate that EHMT1 is an essential enzymatic switch that controls brown adipose cell fate and energy homeostasis.


Asunto(s)
Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/enzimología , Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Termogénesis/genética , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Metabolismo Energético , Células HEK293 , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Ratones
19.
Nature ; 481(7382): 463-8, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22237023

RESUMEN

Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.


Asunto(s)
Tejido Adiposo Pardo/citología , Tejido Adiposo Blanco/citología , Termogénesis , Transactivadores/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hormonas/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales Iónicos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Proteínas Mitocondriales/metabolismo , Modelos Animales , Células Musculares/metabolismo , Obesidad/sangre , Obesidad/inducido químicamente , Obesidad/prevención & control , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Condicionamiento Físico Animal/fisiología , Plasma/química , Grasa Subcutánea/citología , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo , Termogénesis/efectos de los fármacos , Termogénesis/genética , Transactivadores/deficiencia , Transactivadores/genética , Factores de Transcripción , Proteína Desacopladora 1
20.
Annu Rev Physiol ; 76: 225-49, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24188710

RESUMEN

Brown adipose tissue (BAT) is specialized to dissipate chemical energy in the form of heat as a defense against cold and excessive feeding. Interest in the field of BAT biology has exploded in the past few years because of the therapeutic potential of BAT to counteract obesity and obesity-related diseases, including insulin resistance. Much progress has been made, particularly in the areas of BAT physiology in adult humans, developmental lineages of brown adipose cell fate, and hormonal control of BAT thermogenesis. As we enter into a new era of brown fat biology, the next challenge will be to develop strategies for activating BAT thermogenesis in adult humans to increase whole-body energy expenditure. This article reviews the recent major advances in this field and discusses emerging questions.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Metabolismo Energético/fisiología , Adipocitos/fisiología , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Animales , Linaje de la Célula/fisiología , Homeostasis/fisiología , Humanos , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Cintigrafía , Termogénesis/fisiología , Proteína Desacopladora 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA