Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Adv Exp Med Biol ; 1394: 19-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587379

RESUMEN

CNS tumors are a diverse group of neoplasms that emerge from a variety of different CNS cell types. These tumors may be benign, malignant, or borderline in nature. The majority of high grade glial tumors are fatal, with the exception of pilocytic astrocytoma. Primary malignant CNS tumors occur at a global annual rate of 2.1 to 5.8 per 100,000 persons. Males are more likely to develop malignant brain tumors than females, whereas benign meningiomas are more common in adult females. Additionally, gender inequalities in non-malignant tumors peak between the ages of 25 and 29 years. Only a small number of genetic variants have been associated with survival and prognosis. Notably, central nervous system (CNS) tumors exhibit significant age, gender, and race variation. Race is another factor that affects the incidence of brain and spinal cord tumors. Different races exhibit variation in terms of the prevalence of brain and CNS malignancies. This chapter discusses ongoing research on brain and spinal cord tumor epidemiology, as well as the associated risks and accompanied disorders.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Neoplasias de la Médula Espinal , Adulto , Masculino , Femenino , Humanos , Neoplasias del Sistema Nervioso Central/epidemiología , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias de la Médula Espinal/epidemiología , Neoplasias de la Médula Espinal/genética , Encéfalo/patología , Incidencia
2.
Front Immunol ; 14: 1127247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923399

RESUMEN

Background: Galectins are an eleven-member class of lectins in humans that function as immune response mediators and aberrancies in their expression are commonly associated with immunological diseases. Several studies have focused on galectins as they may represent an important biomarker and a therapeutic target in the fight against COVID-19. This systematic review and meta-analysis examined the usefulness of clinical assessment of circulating galectin levels in patients with COVID-19. Methods: International databases including PubMed, Scopus, Web of Science, and Embase were systematically used as data sources for our analyses. The random-effect model was implemented to calculate the standardized mean difference (SMD) and a 95% confidence interval (CI). Results: A total of 18 studies, comprising 2,765 individuals, were identified and used in our analyses. We found that Gal-3 is the most widely investigated galectin in COVID-19. Three studies reported significantly higher Gal-1 levels in COVID-19 patients. Meta-analysis revealed that patients with COVID-19 had statistically higher levels of Gal-3 compared with healthy controls (SMD 0.53, 95% CI 0.10 to 0.96, P=0.02). However, there was no significant difference between severe and non-severe cases (SMD 0.45, 95% CI -0.17 to 1.07, P=0.15). While one study supports lower levels of Gal-8 in COVID-19, Gal-9 was measured to be higher in patients and more severe cases. Conclusion: Our study supports Gal-3 as a valuable non-invasive biomarker for the diagnosis and/or prognosis of COVID-19. Moreover, based on the evidence provided here, more studies are needed to confirm a similar diagnostic and prognostic role for Gal-1, -8, and -9.


Asunto(s)
COVID-19 , Humanos , Biomarcadores , Galectinas/metabolismo , Benzamidas
3.
Biol Sex Differ ; 13(1): 12, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35337376

RESUMEN

Women and men are suggested to have differences in vulnerability to neuropsychiatric disorders, including major depressive disorder (MDD), generalized anxiety disorder (GAD), schizophrenia, eating disorders, including anorexia nervosa, and bulimia nervosa, neurodevelopmental disorders, such as autism spectrum disorder (ASD), and neurodegenerative disorders including Alzheimer's disease, Parkinson's disease. Genetic factors and sex hormones are apparently the main mediators of these differences. Recent evidence uncovers that reciprocal interactions between sex-related features (e.g., sex hormones and sex differences in the brain) and gut microbiota could play a role in the development of neuropsychiatric disorders via influencing the gut-brain axis. It is increasingly evident that sex-microbiota-brain interactions take part in the occurrence of neurologic and psychiatric disorders. Accordingly, integrating the existing evidence might help to enlighten the fundamental roles of these interactions in the pathogenesis of neuropsychiatric disorders. In addition, an increased understanding of the biological sex differences on the microbiota-brain may lead to advances in the treatment of neuropsychiatric disorders and increase the potential for precision medicine. This review discusses the effects of sex differences on the brain and gut microbiota and the putative underlying mechanisms of action. Additionally, we discuss the consequences of interactions between sex differences and gut microbiota on the emergence of particular neuropsychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Depresivo Mayor , Microbioma Gastrointestinal , Eje Cerebro-Intestino , Femenino , Humanos , Masculino , Caracteres Sexuales
4.
Mol Brain ; 15(1): 20, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197102

RESUMEN

Alzheimer's disease (AD), a critical neurodegenerative condition, has a wide range of effects on brain activity. Synaptic plasticity and neuronal circuits are the most vulnerable in Alzheimer's disease, but the exact mechanism is unknown. Incorporating optogenetics into the study of AD has resulted in a significant leap in this field during the last decades, kicking off a revolution in our knowledge of the networks that underpin cognitive functions. In Alzheimer's disease, optogenetics can help to reduce and reverse neural circuit and memory impairments. Here we review how optogenetically driven methods have helped expand our knowledge of Alzheimer's disease, and how optogenetic interventions hint at a future translation into therapeutic possibilities for further utilization in clinical settings. In conclusion, neuroscience has witnessed one of its largest revolutions following the introduction of optogenetics into the field.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/terapia , Cognición , Humanos , Trastornos de la Memoria , Plasticidad Neuronal , Optogenética/métodos
5.
J Eat Disord ; 10(1): 105, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35850718

RESUMEN

BACKGROUND: Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, development, and plasticity. Evidence suggests that fluctuations in peripheral levels (i.e., plasma or serum) of BDNF are associated with eating behaviors. Nevertheless, the findings are inconsistent. The purpose of this study is to determine if serum or plasma levels of BDNF are altered in individuals with eating disorders (EDs) compared to controls. METHODS: We conducted a systematic search of the core electronic medical databases from inception to March 2022 and identified observational studies that compared individuals with EDs to controls without EDs on serum or plasma levels of BDNF. R version 4.0.4 was used for all visualizations and calculations. RESULTS: The current meta-analysis comprised 15 studies that fulfilled the inclusion criteria. Subjects with EDs (n = 795) showed lower BDNF levels compared to non-EDs controls (n = 552) (SMD: - 0.49, 95% CI [- 0.89; - 0.08], p-value = 0.01). Moreover, subgroup analysis was conducted based on the specimen (plasma and serum), which revealed no statistically significant difference in the levels of BDNF between the two subgroups (p-value = 0.92). Additionally, meta-regression results revealed that publication year, mean age of the individuals with EDs, NOS scores, and the number of individuals with EDs collectively accounted for 25.99% percent of the existing heterogeneity. CONCLUSION: Lower BDNF levels are associated with EDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA