Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem ; 80: 117173, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36696874

RESUMEN

We combined a mechanism-informed phenotypic screening (MIPS) assay with a structural simplification strategy to guide the discovery of compounds that disrupt the localization of the mitotic regulator, Aurora kinase B (AURKB), rather than inhibiting its catalytic activity. An initial hit 4-(4-methylthiophen-2-yl)-N-(4-(quinolin-4-yloxy)phenyl)phthalazin-1-amine was identified after screening an in-house library of small molecules and phenocopied the loss of function mutations in AURKB without inhibiting its catalytic activity. We isolated this hit compound activity to its 4-phenoxy-quinoline moiety. The fragment was further optimized into a class of new chemical entities that potently disrupt the mitotic localization of AURKB at low nanomolar concentrations and consequently elicit severe growth inhibition in diverse human cancer cell lines. A lead compound, N-(3-methoxy-5-(6-methoxyquinolin-4-yl)oxy)phenyl)acetamide possessed desirable pharmacokinetic properties such as AUC0-∞: 227.15 [ng∙h/mL/(mg/kg)]; Cmax: 3378.52 ng/mL T1/2: 3.52 h; and F%: 42 % and produced the AURKB-inhibitory phenotypes in a mouse xenograft model. A lead compound is a powerful tool for interrogating the regulation of AURKB and has the potential to be further developed as a first-in-class oncology therapeutic.


Asunto(s)
Neoplasias , Quinolinas , Humanos , Ratones , Animales , Aurora Quinasa B , Fenotipo , Aurora Quinasa A/metabolismo
2.
PLoS One ; 18(10): e0293283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903144

RESUMEN

The mitotic regulator, Aurora kinase B (AURKB), is frequently overexpressed in malignancy and is a target for therapeutic intervention. The compound, LXY18, is a potent, orally available small molecule that inhibits the proper localization of AURKB during late mitosis, without affecting its kinase activity. In this study, we demonstrate that LXY18 elicits apoptosis in cancer cells derived from various indications, but not in non-transformed cell lines. The apoptosis is p53-independent, triggered by a prolonged mitotic arrest and occurs predominantly in mitosis. Some additional cells succumb post-mitotic slippage. We also demonstrate that cancer cell lines refractory to AURKB kinase inhibitors are sensitive to LXY18. The mitotic proteins MKLP2, NEK6, NEK7 and NEK9 are known regulators of AURKB localization during the onset of anaphase. LXY18 fails to inhibit the catalytic activity of these AURKB localization factors. Overall, our findings suggest a novel activity for LXY18 that produces a prolonged mitotic arrest and lethality in cancer cells, leaving non-transformed cells healthy. This new activity suggests that the compound may be a promising drug candidate for cancer treatment and that it can also be used as a tool compound to further dissect the regulatory network controlling AURKB localization.


Asunto(s)
Aurora Quinasa A , Neoplasias , Humanos , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Muerte Celular , Mitosis , Neoplasias/tratamiento farmacológico , Quinasas Relacionadas con NIMA
3.
ACS Pharmacol Transl Sci ; 6(8): 1155-1163, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37588758

RESUMEN

We investigated a novel 4-phenoxy-quinoline-based scaffold that mislocalizes the essential mitotic kinase, Aurora kinase B (AURKB). Here, we evaluated the impact of halogen substitutions (F, Cl, Br, and I) on this scaffold with respect to various drug parameters. Br-substituted LXY18 was found to be a potent and orally bioavailable disruptor of cell division, at sub-nanomolar concentrations. LXY18 prevents cytokinesis by blocking AURKB relocalization in mitosis and exhibits broad-spectrum antimitotic activity in vitro. With a favorable pharmacokinetic profile, it shows widespread tissue distribution including the blood-brain barrier penetrance and effective accumulation in tumor tissues. More importantly, it markedly suppresses tumor growth. The novel mode of action of LXY18 may eliminate some drawbacks of direct catalytic inhibition of Aurora kinases. Successful development of LXY18 as a clinical candidate for cancer treatment could enable a new, less toxic means of antimitotic attack that avoids drug resistance mechanisms.

4.
Eur J Med Chem ; 245(Pt 1): 114904, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36413818

RESUMEN

Activity-based drug screens have successfully led to the development of various inhibitors of the catalytic activity of aurora kinases (AURKs), major regulatory kinases of cell division. Disrupting the localization of AURKB, rather than its catalytic activity, represents a largely unexplored alternative approach to disabling AURKB-dependent processes. Localization disruptors could be just as specific as direct inhibitors of AURKB activity, may bypass their off-target and select on-target toxicities, and are likely less susceptible to drug resistance resulting from mutations of the AURKB catalytic site. In this study, we demonstrate that the pan-AURK inhibitor AMG900 works at a low concentration not by inhibiting the phosphorylation of H3 at Ser10, an AURKB substrate, but by disrupting the mitotic localization of AURKB. Structural deletion studies pinpoint this undescribed activity to the 2-phenoxy-3,4'-bipyridine moiety of AMG900. Guided by a mechanism-informed phenotypic screening (MIPS) assay, the drug fragment is optimized into a novel class of inhibitors that, at low nanomolar concentrations, can disable AURKB through disruption of its mitotic localization and have desirable oral PK properties. Hierarchical clustering of cell fitness profiles reveals that these compounds cluster with each other, rather than with known AURK inhibitors such as AMG900 and VX-680. Validation studies in mice demonstrate that compound 15a elicits mitotic arrest and apoptosis in NCI-H23 human lung adenocarcinoma xenografts, resulting in a pronounced suppression of tumor growth. The discovery and optimization of compounds that disrupt AURKB localization are successfully facilitated by MIPS. Our findings suggest that 2-phenoxy-3, 4'-bipyridine derivatives have the potential to be further developed as effective therapeutics for the treatment of malignancy by delocalizing AURKB.


Asunto(s)
Compuestos Heterocíclicos , Neoplasias Pulmonares , Humanos , Animales , Ratones , Mitosis , Aurora Quinasas , Fosforilación , Aurora Quinasa B
5.
ACS Med Chem Lett ; 13(7): 1091-1098, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859866

RESUMEN

We used mechanism-informed phenotypic screening to identify and optimize compounds that phenocopy the genetic depletion of the mitotic aurora kinase B (AURKB) kinase. After assaying nine aryl fused seven-membered lactam compounds, we identified a hit compound 6a that was subsequently optimized to five lead compounds with low nanomolar activity, represented by the lead compound 6v (19 nM). With excellent drug-like properties, these compounds reproduced the loss of function in phenotypes of AURKB and exhibited potent cytotoxic activities in various cancer cell lines. Collectively, these data support that seven-membered lactam-based analogs might be valuable for further development as a new type of antimitotic agents for the treatment of cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA