Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32300252

RESUMEN

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Asunto(s)
Investigación Biomédica/normas , Transición Epitelial-Mesenquimal , Animales , Movimiento Celular , Plasticidad de la Célula , Consenso , Biología Evolutiva/normas , Humanos , Neoplasias/patología , Terminología como Asunto
3.
Dev Biol ; 511: 26-38, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38580174

RESUMEN

In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.


Asunto(s)
Tubo Neural , Médula Espinal , Animales , Médula Espinal/embriología , Tubo Neural/embriología , Cresta Neural/embriología , Cresta Neural/citología , Cresta Neural/fisiología , Diferenciación Celular/fisiología , Neuroglía/fisiología , Células Neuroepiteliales/citología , Células Neuroepiteliales/fisiología , Humanos
4.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891790

RESUMEN

Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.


Asunto(s)
Proteínas Hedgehog , Costillas , Columna Vertebral , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Costillas/metabolismo , Costillas/embriología , Columna Vertebral/metabolismo , Columna Vertebral/embriología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Mesodermo/embriología , Codorniz , Somitos/metabolismo , Somitos/embriología , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Portadoras
5.
Development ; 147(10)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32345743

RESUMEN

Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors.


Asunto(s)
Proteínas Hedgehog/metabolismo , Tubo Neural/embriología , Neurulación/genética , Notocorda/metabolismo , Codorniz/embriología , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Mesodermo/metabolismo , Neuronas Motoras/metabolismo , Placa Neural/metabolismo , Tubo Neural/metabolismo , Neurogénesis/genética , Receptor Patched-1/metabolismo , Transducción de Señal/genética , Transfección
6.
BMC Biol ; 19(1): 84, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892704

RESUMEN

BACKGROUND: The dorsal domain of the neural tube is an excellent model to investigate the generation of complexity during embryonic development. It is a highly dynamic and multifaceted region being first transiently populated by prospective neural crest (NC) cells that sequentially emigrate to generate most of the peripheral nervous system. Subsequently, it becomes the definitive roof plate (RP) of the central nervous system. The RP, in turn, constitutes a patterning center for dorsal interneuron development. The factors underlying establishment of the definitive RP and its segregation from NC and dorsal interneurons are currently unknown. RESULTS: We performed a transcriptome analysis at trunk levels of quail embryos comparing the dorsal neural tube at premigratory NC and RP stages. This unraveled molecular heterogeneity between NC and RP stages, and within the RP itself. By implementing these genes, we asked whether Notch signaling is involved in RP development. First, we observed that Notch is active at the RP-interneuron interface. Furthermore, gain and loss of Notch function in quail and mouse embryos, respectively, revealed no effect on early NC behavior. Constitutive Notch activation caused a local downregulation of RP markers with a concomitant development of dI1 interneurons, as well as an ectopic upregulation of RP markers in the interneuron domain. Reciprocally, in mice lacking Notch activity, both the RP and dI1 interneurons failed to form and this was associated with expansion of the dI2 population. CONCLUSIONS: Collectively, our results offer a new resource for defining specific cell types, and provide evidence that Notch is required to establish the definitive RP, and to determine the choice between RP and interneuron fates, but not the segregation of RP from NC.


Asunto(s)
Tubo Neural , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Ratones , Cresta Neural , Estudios Prospectivos , ARN
7.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502050

RESUMEN

To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.


Asunto(s)
Diferenciación Celular , Mesodermo/citología , Tubo Neural/citología , Animales , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Mesodermo/embriología , Mesodermo/metabolismo , Tubo Neural/embriología , Tubo Neural/metabolismo
8.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920095

RESUMEN

Research on the development of the dorsal neural tube is particularly challenging. In this highly dynamic domain, a temporal transition occurs between early neural crest progenitors that undergo an epithelial-to-mesenchymal transition and exit the neural primordium, and the subsequent roof plate, a resident epithelial group of cells that constitutes the dorsal midline of the central nervous system. Among other functions, the roof plate behaves as an organizing center for the generation of dorsal interneurons. Despite extensive knowledge of the formation, emigration and migration of neural crest progenitors, little is known about the mechanisms leading to the end of neural crest production and the transition into a roof plate stage. Are these two mutually dependent or autonomously regulated processes? Is the generation of roof plate and dorsal interneurons induced by neural tube-derived factors throughout both crest and roof plate stages, respectively, or are there differences in signaling properties and responsiveness as a function of time? In this review, we discuss distinctive characteristics of each population and possible mechanisms leading to the shift between the above cell types.


Asunto(s)
Diferenciación Celular/genética , Sistema Nervioso Central/crecimiento & desarrollo , Cresta Neural/crecimiento & desarrollo , Tubo Neural/crecimiento & desarrollo , Animales , Proteínas Morfogenéticas Óseas/genética , Sistema Nervioso Central/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Interneuronas/metabolismo , Transducción de Señal/genética , Proteínas Wnt/genética
9.
Cell Commun Signal ; 17(1): 69, 2019 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-31228951

RESUMEN

BACKGROUND: Premigratory neural crest progenitors undergo an epithelial-to-mesenchymal transition and leave the neural tube as motile cells. Previously, we showed that BMP generates trunk neural crest emigration through canonical Wnt signaling which in turn stimulates G1/S transition. The molecular network underlying this process is, however, not yet completely deciphered. Yes-associated-protein (YAP), an effector of the Hippo pathway, controls various aspects of development including cell proliferation, migration, survival and differentiation. In this study, we examined the possible involvement of YAP in neural crest emigration and its relationship with BMP and Wnt. METHODS: We implemented avian embryos in which levels of YAP gene activity were either reduced or upregulated by in ovo plasmid electroporation, and monitored effects on neural crest emigration, survival and proliferation. Neural crest-derived sensory neuron and melanocyte development were assessed upon gain of YAP function. Imunohistochemistry was used to assess YAP expression. In addition, the activity of specific signaling pathways including YAP, BMP and Wnt was monitored with specific reporters. RESULTS: We find that the Hippo pathway transcriptional co-activator YAP is expressed and is active in premigratory crest of avian embryos. Gain of YAP function stimulates neural crest emigration in vivo, and attenuating YAP inhibits cell exit. This is associated with an accumulation of FoxD3-expressing cells in the dorsal neural tube, with reduced proliferation, and enhanced apoptosis. Furthermore, gain of YAP function inhibits differentiation of Islet-1-positive sensory neurons and augments the number of EdnrB2-positive melanocytes. Using specific in vivo reporters, we show that loss of YAP function in the dorsal neural tube inhibits BMP and Wnt activities whereas gain of YAP function stimulates these pathways. Reciprocally, inhibition of BMP and Wnt signaling by noggin or Xdd1, respectively, downregulates YAP activity. In addition, YAP-dependent stimulation of neural crest emigration is compromised upon inhibition of either BMP or Wnt activities. Together, our results suggest a positive bidirectional cross talk between these pathways. CONCLUSIONS: Our data show that YAP is necessary for emigration of neural crest progenitors. In addition, they incorporate YAP signaling into a BMP/Wnt-dependent molecular network responsible for emigration of trunk-level neural crest.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Cresta Neural/metabolismo , Transactivadores/metabolismo , Proteínas Wnt/metabolismo , Animales , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Melanocitos/metabolismo , Unión Proteica , Transporte de Proteínas
10.
Genesis ; 56(6-7): e23090, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29369490

RESUMEN

Within the dynamic context of a developing embryo, the multicellular patterns formed are extraordinarily precise. Through cell-cell communication, neighboring progenitors coordinate their activities, sequentially generating distinct tissues. The development of the dorsal neural tube remarkably illustrates this principle. It first generates neural crest (NC) cells, precursors of most of the peripheral nervous system, and then becomes the roof plate (RP) of the central nervous system. While the molecular network regulating emigration of NC progenitors has been extensively studied, the mechanisms by which dorsal neural tube precursors transit from an initial NC fate to a definitive RP identity remain widely open to investigation. Critical differences exist between premigratory NC and RP cells. Whereas the former extensively proliferate and undergo an epithelial-to-mesenchymal transition that generates cellular migrations, the latter progressively exit the cell cycle and regain epithelial traits including apico-basal polarity and regeneration of a laminin-containing basement membrane. To understand this transition, the nature of the cross-talk between these two sequentially forming progenitor subsets should be unraveled, including the identity and mode of action of signals that, on the one hand, induce the arrest of NC emigration, and, on the other hand, promote formation of a definitive RP.


Asunto(s)
Cresta Neural/embriología , Cresta Neural/metabolismo , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Desarrollo Embrionario/fisiología , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Tubo Neural/metabolismo
11.
BMC Biol ; 14: 23, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27012662

RESUMEN

BACKGROUND: The dorsal midline region of the neural tube that results from closure of the neural folds is generally termed the roof plate (RP). However, this domain is highly dynamic and complex, and is first transiently inhabited by prospective neural crest (NC) cells that sequentially emigrate from the neuroepithelium. It only later becomes the definitive RP, the dorsal midline cells of the spinal cord. We previously showed that at the trunk level of the axis, prospective RP progenitors originate ventral to the premigratory NC and progressively reach the dorsal midline following NC emigration. However, the molecular mechanisms underlying the end of NC production and formation of the definitive RP remain virtually unknown. RESULTS: Based on distinctive cellular and molecular traits, we have defined an initial NC and a subsequent RP stage, allowing us to investigate the mechanisms responsible for the transition between the two phases. We demonstrate that in spite of the constant production of BMP4 in the dorsal tube at both stages, RP progenitors only transiently respond to the ligand and lose competence shortly before they arrive at their final location. In addition, exposure of dorsal tube cells at the NC stage to high levels of BMP signaling induces premature RP traits, such as Hes1/Hairy1, while concomitantly inhibiting NC production. Reciprocally, early inhibition of BMP signaling prevents Hairy1 mRNA expression at the RP stage altogether, suggesting that BMP is both necessary and sufficient for the development of this RP-specific trait. Furthermore, when Hes1/Hairy1 is misexpressed at the NC stage, it inhibits BMP signaling and downregulates BMPR1A/Alk3 mRNA expression, transcription of BMP targets such as Foxd3, cell-cycle progression, and NC emigration. Reciprocally, Foxd3 inhibits Hairy1, suggesting that repressive cross-interactions at the level of, and downstream from, BMP ensure the temporal separation between both lineages. CONCLUSIONS: Together, our data suggest that BMP signaling is important both for NC and RP formation. Given that these two structures develop sequentially, we speculate that the longer exposure of RP progenitors to BMP compared with that of premigratory NC cells may be translated into a higher signaling level in the former. This induces changes in responsiveness to BMP, most likely by downregulating the expression of Alk3 receptors and, consequently, of BMP-dependent downstream transcription factors, which exhibit spatial complementary expression patterns and mutually repress each other to generate alternative fates. This molecular dynamic is likely to account for the transition between the NC and definitive RP stages and thus be responsible for the segregation between central and peripheral lineages during neural development.


Asunto(s)
Proteínas Aviares/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Embrión de Pollo/embriología , Proteínas de Homeodominio/metabolismo , Cresta Neural/embriología , Tubo Neural/embriología , Transducción de Señal , Animales , Ciclo Celular , Embrión de Pollo/citología , Embrión de Pollo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/citología , Cresta Neural/metabolismo , Tubo Neural/citología , Tubo Neural/metabolismo , Codorniz
12.
Development ; 140(8): 1740-50, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23533174

RESUMEN

The development of a functional tissue requires coordination of the amplification of progenitors and their differentiation into specific cell types. The molecular basis for this coordination during myotome ontogeny is not well understood. Dermomytome progenitors that colonize the myotome first acquire myocyte identity and subsequently proliferate as Pax7-expressing progenitors before undergoing terminal differentiation. We show that the dynamics of sonic hedgehog (Shh) signaling is crucial for this transition in both avian and mouse embryos. Initially, Shh ligand emanating from notochord/floor plate reaches the dermomyotome, where it both maintains the proliferation of dermomyotome cells and promotes myogenic differentiation of progenitors that colonized the myotome. Interfering with Shh signaling at this stage produces small myotomes and accumulation of Pax7-expressing progenitors. An in vivo reporter of Shh activity combined with mouse genetics revealed the existence of both activator and repressor Shh activities operating on distinct subsets of cells during the epaxial myotomal maturation. In contrast to observations in mice, in avians Shh promotes the differentiation of both epaxial and hypaxial myotome domains. Subsequently, myogenic progenitors become refractory to Shh; this is likely to occur at the level of, or upstream of, smoothened signaling. The end of responsiveness to Shh coincides with, and is thus likely to enable, the transition into the growth phase of the myotome.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Desarrollo de Músculos/fisiología , Transducción de Señal/fisiología , Células Madre/citología , Animales , Proliferación Celular , Embrión de Pollo , Cartilla de ADN/genética , Electroporación , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Notocorda/trasplante , Factor de Transcripción PAX7/metabolismo , Codorniz , Células Madre/fisiología , Factores de Tiempo
13.
Development ; 140(11): 2269-79, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23615280

RESUMEN

Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on 'in ovo' lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Melanocitos/metabolismo , Tubo Neural/embriología , Tubo Neural/fisiología , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Embrión de Pollo , Melaninas/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Microscopía Fluorescente , Receptor de Endotelina B/metabolismo , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Tiempo , Factores de Transcripción/metabolismo
14.
Proc Natl Acad Sci U S A ; 110(31): 12709-14, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858437

RESUMEN

Skin melanocytes arise from two sources: either directly from neural crest progenitors or indirectly from neural crest-derived Schwann cell precursors after colonization of peripheral nerves. The relationship between these two melanocyte populations and the factors controlling their specification remains poorly understood. Direct lineage tracing reveals that neural crest and Schwann cell progenitor-derived melanocytes are differentially restricted to the epaxial and hypaxial body domains, respectively. Furthermore, although both populations are initially part of the Foxd3 lineage, hypaxial melanocytes lose Foxd3 at late stages upon separation from the nerve, whereas we recently found that epaxial melanocytes segregate earlier from Foxd3-positive neural progenitors while still residing in the dorsal neural tube. Gain- and loss-of-function experiments in avians and mice, respectively, reveal that Foxd3 is both sufficient and necessary for regulating the balance between melanocyte and Schwann cell development. In addition, Foxd3 is also sufficient to regulate the switch between neuronal and glial fates in sensory ganglia. Together, we propose that differential fate acquisition of neural crest-derived cells depends on their progressive segregation from the Foxd3-positive lineage.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Factores de Transcripción Forkhead/metabolismo , Melanocitos/metabolismo , Cresta Neural/embriología , Células-Madre Neurales/metabolismo , Proteínas Represoras/metabolismo , Células de Schwann/metabolismo , Animales , Embrión de Pollo , Pollos , Ganglios Sensoriales/citología , Ganglios Sensoriales/embriología , Melanocitos/citología , Ratones , Cresta Neural/citología , Células-Madre Neurales/citología , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Células de Schwann/citología
15.
BMC Biol ; 12: 53, 2014 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-25015411

RESUMEN

BACKGROUND: Lineage segregation from multipotent epithelia is a central theme in development and in adult stem cell plasticity. Previously, we demonstrated that striated and smooth muscle cells share a common progenitor within their epithelium of origin, the lateral domain of the somite-derived dermomyotome. However, what controls the segregation of these muscle subtypes remains unknown. We use this in vivo bifurcation of fates as an experimental model to uncover the underlying mechanisms of lineage diversification from bipotent progenitors. RESULTS: Using the strength of spatio-temporally controlled gene missexpression in avian embryos, we report that Notch harbors distinct pro-smooth muscle activities depending on the duration of the signal; short periods prevent striated muscle development and extended periods, through Snail1, promote cell emigration from the dermomyotome towards a smooth muscle fate. Furthermore, we define a Muscle Regulatory Network, consisting of Id2, Id3, FoxC2 and Snail1, which acts in concert to promote smooth muscle by antagonizing the pro-myogenic activities of Myf5 and Pax7, which induce striated muscle fate. Notch and BMP closely regulate the network and reciprocally reinforce each other¿s signal. In turn, components of the network strengthen Notch signaling, while Pax7 silences this signaling. These feedbacks augment the robustness and flexibility of the network regulating muscle subtype segregation. CONCLUSIONS: Our results demarcate the details of the Muscle Regulatory Network, underlying the segregation of muscle sublineages from the lateral dermomyotome, and exhibit how factors within the network promote the smooth muscle at the expense of the striated muscle fate. This network acts as an exemplar demonstrating how lineage segregation occurs within epithelial primordia by integrating inputs from competing factors.


Asunto(s)
Proteínas Aviares/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Músculo Esquelético/embriología , Músculo Liso/embriología , Animales , Proteínas Aviares/metabolismo , Embrión de Pollo/embriología , Pollos , Coturnix/embriología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal
16.
Development ; 138(14): 2935-45, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21653616

RESUMEN

Pioneer myoblasts generate the first myotomal fibers and act as a scaffold to pattern further myotome development. From their origin in the medial epithelial somite, they dissociate and migrate towards the rostral edge of each somite, from which differentiation proceeds in both rostral-to-caudal and medial-to-lateral directions. The mechanisms underlying formation of this unique wave of pioneer myofibers remain unknown. We show that rostrocaudal or mediolateral somite inversions in avian embryos do not alter the original directions of pioneer myoblast migration and differentiation into fibers, demonstrating that regulation of pioneer patterning is somite-intrinsic. Furthermore, pioneer myoblasts express Robo2 downstream of MyoD and Myf5, whereas the dermomyotome and caudal sclerotome express Slit1. Loss of Robo2 or of sclerotome-derived Slit1 function perturbed both directional cell migration and fiber formation, and their effects were mediated through RhoA. Although myoblast specification was not affected, expression of the intermediate filament desmin was reduced. Hence, Slit1 and Robo2, via RhoA, act to pattern formation of the pioneer myotome through the regulation of cytoskeletal assembly.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Glicoproteínas/metabolismo , Desarrollo de Músculos/fisiología , Mioblastos/fisiología , Proteínas del Tejido Nervioso/metabolismo , Somitos/fisiología , Animales , Embrión de Pollo , Electroporación , Vectores Genéticos/genética , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Microscopía Confocal , Mioblastos/metabolismo , Codorniz , Interferencia de ARN , Somitos/metabolismo , Estadísticas no Paramétricas
17.
Development ; 138(19): 4155-66, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21852400

RESUMEN

The plane of cell divisions is pivotal for differential fate acquisition. Dermomyotome development provides an excellent system with which to investigate the link between these processes. In the central sheet of the early dermomyotome, single epithelial cells divide with a planar orientation. Here, we report that in the avian embryo, in addition to self-renewing, a subset of progenitors translocates into the myotome where they generate differentiated myocytes. By contrast, in the late epithelium, individual progenitors divide perpendicularly to produce both mitotic myoblasts and dermis. To examine whether spindle orientations influence fate segregation, early planar divisions were randomized and/or shifted to a perpendicular orientation by interfering with LGN function or by overexpressing inscuteable. Clones derived from single transfected cells exhibited an enhanced proportion of mixed dermomyotome/myotome progeny at the expense of `like' daughter cells in either domain. Loss of LGN or Gαi1 function in the late epithelium randomized otherwise perpendicular mitoses and favored muscle development at the expense of dermis. Hence, LGN-dependent early planar divisions are required for the proper allocation of progenitors into either dermomyotome or myotome, whereas late perpendicular divisions are necessary for the normal balance between muscle and dermis production.


Asunto(s)
Dermis/citología , Dermis/embriología , Células Musculares/citología , Músculos/citología , Músculos/embriología , Somitos/citología , Animales , Asparagina/química , Diferenciación Celular/fisiología , División Celular , Linaje de la Célula , Coturnix/embriología , Dermis/metabolismo , Electroporación , Epitelio/patología , Regulación del Desarrollo de la Expresión Génica , Glicina/química , Leucina/química , Mitosis , Morfogénesis , Músculos/metabolismo , Transfección
18.
Development ; 137(4): 585-95, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20110324

RESUMEN

Colonization of trunk neural crest derivatives in avians follows a ventral to dorsal order beginning with sympathetic ganglia, Schwann cells, sensory ganglia and finally melanocytes. Continuous crest emigration underlies this process, which is accounted for by a progressive ventral to dorsal relocation of neural tube progenitors prior to departure. This causes a gradual narrowing of FoxD3, Sox9 and Snail2 expression domains in the dorsal tube that characterize the neural progenitors of the crest and these genes are no longer transcribed by the time melanoblasts begin emigrating. Consistently, the final localization of crest cells can be predicted from their relative ventrodorsal position within the premigratory domain or by their time of delamination. Thus, a dynamic spatiotemporal fate map of crest derivatives exists in the dorsal tube at flank levels of the axis with its midline region acting as a sink for the ordered ingression and departure of progenitors. Furthermore, discrete lineage analysis of the dorsal midline at progressive stages generated progeny in single rather than multiple derivatives, revealing early fate restrictions. Compatible with this notion, when early emigrating ;neural' progenitors were diverted into the lateral ;melanocytic' pathway, they still adopted neural traits, suggesting that initial fate acquisition is independent of the migratory environment and that the potential of crest cells prior to emigration is limited.


Asunto(s)
Embrión de Pollo/embriología , Coturnix/embriología , Cresta Neural/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Movimiento Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Modelos Neurológicos , Cresta Neural/citología , Cresta Neural/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción SOX9/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética
19.
Dev Growth Differ ; 55(1): 60-78, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23043365

RESUMEN

The dorsal domains of the neural tube and somites are transient embryonic epithelia; they constitute the source of neural crest progenitors that generate the peripheral nervous system, pigment cells and ectomesenchyme, and of the dermomyotome that develops into myocytes, dermis and vascular cells, respectively. Based on the variety of derivatives produced by each type of epithelium, a classical yet still highly relevant question is whether these embryonic epithelia are composed of homogeneous multipotent progenitors or, alternatively, of subsets of fate-restricted cells. Growing evidence substantiates the notion that both the dorsal tube and the dermomyotome are heterogeneous epithelia composed of multipotent as well as fate-restricted precursors that emerge as such in a spatio-temporally regulated manner. Elucidation of the state of commitment of the precedent progenitors is of utmost significance for deciphering the mechanisms that regulate fate segregation during embryogenesis. In addition, it will contribute to understanding the nature of well documented neural crest-somite interactions shown to modulate the timing of neural crest cell emigration, their segmental migration, and myogenesis.


Asunto(s)
Mesodermo/embriología , Cresta Neural/embriología , Somitos/embriología , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Linaje de la Célula , Movimiento Celular , Desarrollo Embrionario , Células Epiteliales/citología , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Mesodermo/citología , Desarrollo de Músculos , Músculo Liso/citología , Músculo Liso/metabolismo , Cresta Neural/citología , Neuroglía/citología , Neuroglía/metabolismo , Somitos/citología , Células Madre/citología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Dev Dyn ; 241(7): 1155-68, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22553120

RESUMEN

BACKGROUND: Neural crest progenitors arise as epithelial cells and then undergo a transition into mesenchyme that generates motility. Previously, we showed that active Rho maintains crest cells in the epithelial conformation by keeping stress fibers and membrane-bound N-cadherin. RESULTS: While Rho disappears from cell membranes upon delamination, active Rac1 becomes apparent in lamellipodia of mesenchymal cells. Loss of Rac1 function at trunk levels inhibited NC migration but did not prevent cell emigration that is associated with N-cadherin downregulation and G1/S transition. Furthermore, inhibition of Rho stimulated premature Rac1 activity and consequent formation of lamellipodia, leading to NC migration. To examine whether timely migration influences cell fate, Rac1 activity was transiently inhibited to delay dispersion of early NC cells that generate neural derivatives, and its activity was restored by the time of melanoblast migration. Even if confronted with a melanocytic environment, late-dispersing progenitors colonized sensory ganglia where they generated neurons and glia. CONCLUSIONS: In the context of crest delamination and migration, activities of Rho and Rac are differential, sequential, and antagonistic. Furthermore, transient inhibition of Rac1 that delays the onset of crest dispersion raises the possibility that the fate of trunk neural progenitors might be restricted prior to migration.


Asunto(s)
Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Movimiento Celular/genética , Movimiento Celular/fisiología , Embrión no Mamífero/citología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunohistoquímica , Hibridación in Situ , Cresta Neural/citología , Codorniz , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rho/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA