Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(13): 3886-91, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775594

RESUMEN

Exoplanet discovery has made remarkable progress, with the first rocky planets having been detected in the central star's liquid water habitable zone. The remote sensing techniques used to characterize such planets for potential habitability and life rely solely on our understanding of life on Earth. The vegetation red edge from terrestrial land plants is often used as a direct signature of life, but it occupies only a small niche in the environmental parameter space that binds life on present-day Earth and has been widespread for only about 460 My. To more fully exploit the diversity of the one example of life known, we measured the spectral characteristics of 137 microorganisms containing a range of pigments, including ones isolated from Earth's most extreme environments. Our database covers the visible and near-infrared to the short-wavelength infrared (0.35-2.5 µm) portions of the electromagnetic spectrum and is made freely available from biosignatures.astro.cornell.edu. Our results show how the reflectance properties are dominated by the absorption of light by pigments in the visible portion and by strong absorptions by the cellular water of hydration in the infrared (up to 2.5 µm) portion of the spectrum. Our spectral library provides a broader and more realistic guide based on Earth life for the search for surface features of extraterrestrial life. The library, when used as inputs for modeling disk-integrated spectra of exoplanets, in preparation for the next generation of space- and ground-based instruments, will increase the chances of detecting life.


Asunto(s)
Exobiología/métodos , Anabaena/fisiología , Biodiversidad , Chlorella/fisiología , Planeta Tierra , Medio Ambiente Extraterrestre , Halorubrum/fisiología , Vida , Luz , Microscopía Electrónica de Rastreo , Planetas , Espectrofotometría
2.
Astrobiology ; 22(3): 313-321, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34964651

RESUMEN

With thousands of discovered planets orbiting other stars and new missions that will explore our solar system, the search for life in the universe has entered a new era. However, a reference database to enable our search for life on the surface of icy exoplanets and exomoons by using records from Earth's icy biota is missing. Therefore, we developed a spectra catalogue of life in ice to facilitate the search for extraterrestrial signs of life. We measured the reflection spectra of 80 microorganisms-with a wide range of pigments-isolated from ice and water. We show that carotenoid signatures are wide-ranged and intriguing signs of life. Our measurements allow for the identification of such surface life on icy extraterrestrial environments in preparation for observations with the upcoming ground- and space-based telescopes. Dried samples reveal even higher reflectance, which suggests that signatures of surface biota could be more intense on exoplanets and moons that are drier than Earth or on environments like Titan where potential life-forms may use a different solvent. Our spectra library covers the visible to near-infrared and is available online. It provides a guide for the search for surface life on icy worlds based on biota from Earth's icy environments.


Asunto(s)
Exobiología , Hielo , Planeta Tierra , Medio Ambiente Extraterrestre , Planetas
3.
Astrobiology ; 18(12): 1559-1573, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30063167

RESUMEN

We present a catalog of spectra and geometric albedos, representative of the different types of solar system bodies, from 0.45 to 2.5 µm. We analyzed published calibrated, uncalibrated spectra, and albedos for solar system objects and derived a set of reference spectra and reference albedos for 19 objects that are representative of the diversity of bodies in our solar system. We also identified previously published data that appear contaminated. Our catalog provides a baseline for comparison of exoplanet observations to 19 bodies in our own solar system, which can assist in the prioritization of exoplanets for time intensive follow-up with next-generation extremely large telescopes and space-based direct observation missions. Using high- and low-resolution spectra of these solar system objects, we also derive colors for these bodies and explore how a color-color diagram could be used to initially distinguish between rocky, icy, and gaseous exoplanets. We explore how the colors of solar system analog bodies would change when orbiting different host stars. This catalog of solar system reference spectra and albedos is available for download through the Carl Sagan Institute.


Asunto(s)
Exobiología/estadística & datos numéricos , Medio Ambiente Extraterrestre/química , Sistema Solar/química , Atmósfera/análisis , Atmósfera/química , Color , Exobiología/instrumentación , Exobiología/métodos , Gases/análisis , Gases/química , Análisis Espectral/instrumentación , Análisis Espectral/métodos , Análisis Espectral/estadística & datos numéricos , Telescopios , Agua
4.
Astrobiology ; 18(9): 1123-1136, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30204495

RESUMEN

The high reflection of land vegetation in the near-infrared, the vegetation red edge (VRE), is often cited as a spectral biosignature for surface vegetation on exoplanets. The VRE involves only a few percentage change in reflectivity for a disk-integrated observation of present-day Earth. Here we show that the strength of Earth's VRE has increased over the past ∼500 million years of land plant evolution and may continue to increase as solar luminosity increases and the planet warms, until either vegetation coverage is reduced, or the planet's atmosphere becomes opaque to light reflected off the surface. Early plants such as mosses and liverworts, which dominated the land 500-400 million years ago, produce a weaker VRE, approximately half as strong as that of modern vegetation. We explore how the changes in land plants, as well as geological changes such as ice coverage during ice ages and interglacial periods, influence the detectability of the VRE through Earth's geological past. Our results show that the VRE has varied through the evolutionary history of land plants on Earth and could continue to change into the future if hotter climate conditions became dominant, encouraging the spread of vegetation. Our findings suggest that older and hotter Earth-like planets are good targets for the search for a VRE signature. In addition, hot exoplanets and dry exoplanets with some water could be the best targets for a successful vegetation biosignature detection. As well as a strong red edge, lower cloud fractions and low levels of atmospheric water vapor on such planets could make it easier to detect surface features in general.


Asunto(s)
Evolución Biológica , Planeta Tierra , Embryophyta/fisiología , Exobiología , Medio Ambiente Extraterrestre , Modelos Teóricos , Océanos y Mares , Factores de Tiempo
5.
Astrobiology ; 7(1): 85-166, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17407405

RESUMEN

The changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M() range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability. Tectonic regulation of climate and dynamo generation of a protective magnetic field, especially for a planet in synchronous rotation, are important unresolved questions that must await improved geodynamic models, though they both probably impose constraints on the planet mass. M star HZ terrestrial planets must survive a number of early trials in order to enjoy their many Gyr of stability. Their formation may be jeopardized by an insufficient initial disk supply of solids, resulting in the formation of objects too small and/or dry for habitability. The small empirical gas giant fraction for M stars reduces the risk of formation suppression or orbit disruption from either migrating or nonmigrating giant planets, but effects of perturbations from lower mass planets in these systems are uncertain. During the first approximately 1 Gyr, atmospheric retention is at peril because of intense and frequent stellar flares and sporadic energetic particle events, and impact erosion, both enhanced, the former dramatically, for M star HZ semimajor axes. Loss of atmosphere by interactions with energetic particles is likely unless the planetary magnetic moment is sufficiently large. For the smallest stellar masses a period of high planetary surface temperature, while the parent star approaches the main sequence, must be endured. The formation and retention of a thick atmosphere and a strong magnetic field as buffers for a sufficiently massive planet emerge as prerequisites for an M star planet to enter a long period of stability with its habitability intact. However, the star will then be subjected to short-term fluctuations with consequences including frequent unpredictable variation in atmospheric chemistry and surficial radiation field. After a review of evidence concerning disks and planets associated with M stars, we evaluate M stars as targets for future HZ planet search programs. Strong advantages of M stars for most approaches to HZ detection are offset by their faintness, leading to severe constraints due to accessible sample size, stellar crowding (transits), or angular size of the HZ (direct imaging). Gravitational lensing is unlikely to detect HZ M star planets because the HZ size decreases with mass faster than the Einstein ring size to which the method is sensitive. M star Earth-twin planets are predicted to exhibit surprisingly strong bands of nitrous oxide, methyl chloride, and methane, and work on signatures for other climate categories is summarized. The rest of the paper is devoted to an examination of evidence and implications of the unusual radiation and particle environments for atmospheric chemistry and surface radiation doses, and is summarized in the Synopsis. We conclude that attempts at remote sensing of biosignatures and nonbiological markers from M star planets are important, not as tests of any quantitative theories or rational arguments, but instead because they offer an inspection of the residues from a Gyr-long biochemistry experiment in the presence of extreme environmental fluctuations. A detection or repeated nondetections could provide a unique opportunity to partially answer a fundamental and recurrent question about the relation between stability and complexity, one that is not addressed by remote detection from a planet orbiting a solar-like star, and can only be studied on Earth using restricted microbial systems in serial evolution experiments or in artificial life simulations. This proposal requires a planet that has retained its atmosphere and a water supply. The discussion given here suggests that observations of M star exoplanets can decide this latter question with only slight modifications to plans already in place for direct imaging terrestrial exoplanet missions.


Asunto(s)
Astronomía , Planetas , Fenómenos Astronómicos , Evolución Planetaria , Exobiología , Medio Ambiente Extraterrestre , Simulación del Espacio , Agua
6.
Astrobiology ; 13(1): 47-56, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23252379

RESUMEN

The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 µm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre/química , Planetas , Aerobiosis , Anaerobiosis , Atmósfera/química , Chloroflexus/fisiología , Color , Planeta Tierra , Análisis Espectral , Propiedades de Superficie , Synechococcus/fisiología , Agua
7.
Astrobiology ; 13(3): 251-69, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23537136

RESUMEN

We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 µm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.


Asunto(s)
Medio Ambiente Extraterrestre , Planetas , Análisis Espectral/métodos , Estrellas Celestiales , Altitud , Atmósfera/química , Dióxido de Carbono/análisis , Planeta Tierra , Metano/análisis , Modelos Teóricos , Óxido Nitroso/análisis , Oxígeno/análisis , Ozono/análisis , Fotoquímica , Espectrofotometría Infrarroja , Espectroscopía Infrarroja Corta , Temperatura , Agua/análisis
8.
Science ; 340(6132): 587-90, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23599262

RESUMEN

We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.


Asunto(s)
Planetas , Agua , Exobiología , Medio Ambiente Extraterrestre , Modelos Teóricos , Estrellas Celestiales
9.
Astrobiology ; 10(1): 77-88, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307184

RESUMEN

After Earth's origin, our host star, the Sun, was shining 20-25% less brightly than today. Without greenhouse-like conditions to warm the atmosphere, our early planet would have been an ice ball, and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet. Evidence from the geological record indicates an abundance of the greenhouse gas CO(2). CH(4) was probably present as well; and, in this regard, methanogenic bacteria, which belong to a diverse group of anaerobic prokaryotes that ferment CO(2) plus H(2) to CH(4), may have contributed to modification of the early atmosphere. Molecular oxygen was not present, as is indicated by the study of rocks from that era, which contain iron carbonate rather than iron oxide. Multicellular organisms originated as cells within colonies that became increasingly specialized. The development of photosynthesis allowed the Sun's energy to be harvested directly by life-forms. The resultant oxygen accumulated in the atmosphere and formed the ozone layer in the upper atmosphere. Aided by the absorption of harmful UV radiation in the ozone layer, life colonized Earth's surface. Our own planet is a very good example of how life-forms modified the atmosphere over the planets' lifetime. We show that these facts have to be taken into account when we discover and characterize atmospheres of Earth-like exoplanets. If life has originated and evolved on a planet, then it should be expected that a strong co-evolution occurred between life and the atmosphere, the result of which is the planet's climate.


Asunto(s)
Atmósfera/química , Clima , Evolución Planetaria , Sistema Solar , Oxígeno/química , Ozono/química , Fotosíntesis , Planetas , Luz Solar , Rayos Ultravioleta
10.
Astrobiology ; 10(1): 89-102, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307185

RESUMEN

We discuss how to read a planet's spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have advanced to a level where we now have the capability to find planets of less than 10 Earth masses (M(Earth)) (so-called "super Earths"), which may be habitable. How can we characterize those planets and assess whether they are habitable? This new field of exoplanet search has shown an extraordinary capacity to combine research in astrophysics, chemistry, biology, and geophysics into a new and exciting interdisciplinary approach to understanding our place in the Universe. The results of a first-generation mission will most likely generate an amazing scope of diverse planets that will set planet formation, evolution, and our planet into an overall context.


Asunto(s)
Planetas
11.
Astrobiology ; 10(1): 103-12, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307186

RESUMEN

We present and discuss the criteria for selecting potential target stars suitable for the search for Earth-like planets, with a special emphasis on the stellar aspects of habitability. Missions that search for terrestrial exoplanets will explore the presence and habitability of Earth-like exoplanets around several hundred nearby stars, mainly F, G, K, and M stars. The evaluation of the list of potential target systems is essential in order to develop mission concepts for a search for terrestrial exoplanets. Using the Darwin All Sky Star Catalogue (DASSC), we discuss the selection criteria, configuration-dependent subcatalogues, and the implication of stellar activity for habitability.


Asunto(s)
Planetas
12.
Astrobiology ; 10(1): 113-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307187

RESUMEN

The European Space Agency and other space agencies such as NASA recognize that the question with regard to life beyond Earth in general, and the associated issue of the existence and study of exoplanets in particular, is of paramount importance for the 21(st) century. The new Cosmic Vision science plan, Cosmic Vision 2015-2025, which is built around four major themes, has as its first theme: "What are the conditions for planet formation and the emergence of life?" This main theme is addressed through further questions: 1) How do gas and dust give rise to stars and planets? 2) How will the search for and study of exoplanets eventually lead to the detection of life outside Earth (biomarkers)? 3) How did life in the Solar System arise and evolve? Although ESA has busied itself with these issues since the beginning of the Darwin study in 1996, it has become abundantly clear that, as these topics have evolved, only a very large effort, addressed from the ground and from space with the utilization of different instruments and space missions, can provide the empirical results required for a complete understanding. The good news is that the problems can be addressed and solved within a not-too-distant future. In this short essay, we present the present status of a roadmap related to projects that are related to the key long-term goal of understanding and characterizing exoplanets, in particular Earth-like planets.


Asunto(s)
Sistema Solar , Planetas
13.
Astrobiology ; 10(1): 121-6, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307188

RESUMEN

We describe future steps in the direct characterization of habitable exoplanets subsequent to medium and large mission projects currently underway and investigate the benefits of spectroscopic and direct imaging approaches. We show that, after third- and fourth-generation missions have been conducted over the course of the next 100 years, a significant amount of time will lapse before we will have the capability to observe directly the morphology of extrasolar organisms.


Asunto(s)
Predicción , Análisis Espectral/métodos
14.
Astrobiology ; 10(1): 5-17, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307179

RESUMEN

The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets-particularly, their evolution, their atmospheres, and their ability to host life-constitute a significant problem. The quest for other worlds as abodes of life has been one of mankind's great questions for several millennia. For instance, as stated by Epicurus approximately 300 BC: "Other worlds, with plants and other living things, some of them similar and some of them different from ours, must exist." Demokritos from Abdera (460-370 BC), the man who invented the concept of indivisible small parts-atoms-also held the belief that other worlds exist around the stars and that some of these worlds may be inhabited by life-forms. The idea of the plurality of worlds and of life on them has since been held by scientists like Johannes Kepler and William Herschel, among many others. Here, one must also mention Giordano Bruno. Born in 1548, Bruno studied in France and came into contact with the teachings of Nicolas Copernicus. He wrote the book De l'Infinito, Universo e Mondi in 1584, in which he claimed that the Universe was infinite, that it contained an infinite amount of worlds like Earth, and that these worlds were inhabited by intelligent beings. At the time, this was extremely controversial, and eventually Bruno was arrested by the church and burned at the stake in Rome in 1600, as a heretic, for promoting this and other equally confrontational issues (though it is unclear exactly which idea was the one that ultimately brought him to his end). In all the aforementioned cases, the opinions and results were arrived at through reasoning-not by experiment. We have only recently acquired the technological capability to observe planets orbiting stars other than 6 our Sun; acquisition of this capability has been a remarkable feat of our time. We show in this introduction to the Habitability Primer that mankind is at the dawning of an age when, by way of the scientific method and 21(st)-century technology, we will be able to answer this fascinating controversial issue that has persisted for at least 2500 years.


Asunto(s)
Atmósfera , Vida , Planetas , Proyectos de Investigación , Sistema Solar , Humanos , Factores de Tiempo
15.
Astrobiology ; 10(1): 19-32, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307180

RESUMEN

To estimate the occurrence of terrestrial exoplanets and maximize the chance of finding them, it is crucial to understand the formation of planetary systems in general and that of terrestrial planets in particular. We show that a reliable formation theory should not only explain the formation of the Solar System, with small terrestrial planets within a few AU and gas giants farther out, but also the newly discovered exoplanetary systems with close-in giant planets. Regarding the presently known exoplanets, we stress that our current knowledge is strongly biased by the sensitivity limits of current detection techniques (mainly the radial velocity method). With time and improved detection methods, the diversity of planets and orbits in exoplanetary systems will definitely increase and help to constrain the formation theory further. In this work, we review the latest state of planetary formation in relation to the origin and evolution of habitable terrestrial planets.


Asunto(s)
Gases , Planetas , Sistema Solar , Factores de Tiempo
16.
Astrobiology ; 10(1): 33-43, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307181

RESUMEN

The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries).


Asunto(s)
Sistema Solar , Júpiter , Planetas
17.
Astrobiology ; 10(1): 69-76, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307183

RESUMEN

The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.


Asunto(s)
Evolución Biológica , Vida , Planetas , Ambiente , Iones , Sistema Solar
18.
Astrobiology ; 10(1): 45-68, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307182

RESUMEN

The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.


Asunto(s)
Evolución Planetaria , Magnetismo , Planetas , Radiación , Atmósfera/análisis , Ambiente , Agua/análisis
19.
Astrobiology ; 9(7): 623-36, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19778274

RESUMEN

On Earth, photosynthetic organisms are responsible for the production of virtually all the oxygen in the atmosphere. On land, vegetation reflects in the visible and leads to a "red edge," which developed about 450 million years ago on Earth and has been proposed as a biosignature for life on extrasolar planets. However, in many regions on Earth, particularly where surface conditions are extreme--in hot and cold deserts, for example--photosynthetic organisms can be driven into and under substrates where light is still sufficient for photosynthesis. These communities exhibit no detectable surface spectral signature to indicate life. The same is true of the assemblages of photosynthetic organisms at more than a few meters' depth in water bodies. These communities are widespread and dominate local photosynthetic productivity. We review known cryptic photosynthetic communities and their productivity. We have linked geomicrobiology with observational astronomy by calculating the disk-averaged spectra of cryptic habitats and identifying detectable features on an exoplanet dominated by such a biota. The hypothetical cryptic photosynthesis worlds discussed here are Earth analogues that show detectable atmospheric biosignatures like our own planet but do not exhibit a discernable biological surface feature in the disc-averaged spectrum.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre/química , Oxígeno/química , Fotosíntesis/fisiología , Planetas , Sistema Solar , Biodiversidad , Planeta Tierra , Modelos Biológicos , Análisis Espectral , Propiedades de Superficie , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA