Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
New Phytol ; 238(4): 1722-1732, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36751910

RESUMEN

Understanding the evolutionary conservation of complex eukaryotic transcriptomes significantly illuminates the physiological relevance of alternative splicing (AS). Examining the evolutionary depth of a given AS event with ordinary homology searches is generally challenging and time-consuming. Here, we present Catsnap, an algorithmic pipeline for assessing the conservation of putative protein isoforms generated by AS. It employs a machine learning approach following a database search with the provided pair of protein sequences. We used the Catsnap algorithm for analyzing the conservation of emerging experimentally characterized alternative proteins from plants and animals. Indeed, most of them are conserved among other species. Catsnap can detect the conserved functional protein isoforms regardless of the AS type by which they are generated. Notably, we found that while the primary amino acid sequence is maintained, the type of AS determining the inclusion or exclusion of protein regions varies throughout plant phylogenetic lineages in these proteins. We also document that this phenomenon is less seen among animals. In sum, our algorithm highlights the presence of unexpectedly frequent hotspots where protein isoforms recurrently arise to carry physiologically relevant functions. The user web interface is available at https://catsnap.cesnet.cz/.


Asunto(s)
Algoritmos , Empalme Alternativo , Animales , Empalme Alternativo/genética , Filogenia , Isoformas de Proteínas/genética , Secuencia de Aminoácidos , Proteínas Mutantes , Plantas , Evolución Molecular , Secuencia Conservada/genética
2.
Nucleic Acids Res ; 49(2): 1133-1151, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33406240

RESUMEN

Alternative splicing generates multiple transcript and protein isoforms from a single gene and controls transcript intracellular localization and stability by coupling to mRNA export and nonsense-mediated mRNA decay (NMD). RNA interference (RNAi) is a potent mechanism to modulate gene expression. However, its interactions with alternative splicing are poorly understood. We used artificial microRNAs (amiRNAs, also termed shRNAmiR) to knockdown all splice variants of selected target genes in Arabidopsis thaliana. We found that splice variants, which vary by their protein-coding capacity, subcellular localization and sensitivity to NMD, are affected differentially by an amiRNA, although all of them contain the target site. Particular transcript isoforms escape amiRNA-mediated degradation due to their nuclear localization. The nuclear and NMD-sensitive isoforms mask RNAi action in alternatively spliced genes. Interestingly, Arabidopsis SPL genes, which undergo alternative splicing and are targets of miR156, are regulated in the same manner. Moreover, similar results were obtained in mammalian cells using siRNAs, indicating cross-kingdom conservation of these interactions among RNAi and splicing isoforms. Furthermore, we report that amiRNA can trigger artificial alternative splicing, thus expanding the RNAi functional repertoire. Our findings unveil novel interactions between different post-transcriptional processes in defining transcript fates and regulating gene expression.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Técnicas de Silenciamiento del Gen , Degradación de ARNm Mediada por Codón sin Sentido , Isoformas de Proteínas/genética , Interferencia de ARN , Precursores del ARN/metabolismo , ARN de Planta/metabolismo , Proteínas de Arabidopsis/biosíntesis , Exones , Genes de Plantas , Células HeLa , Humanos , MicroARNs/genética , Plantas Modificadas Genéticamente , Isoformas de Proteínas/biosíntesis , Protoplastos/metabolismo , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN de Planta/genética , Factores de Empalme Serina-Arginina/biosíntesis , Factores de Empalme Serina-Arginina/genética , Transcripción Genética , Transfección
3.
New Phytol ; 229(4): 1937-1945, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33135169

RESUMEN

Alternative splicing (AS) is a major gene regulatory mechanism in plants. Recent evidence supports co-transcriptional splicing in plants, hence the chromatin state can impact AS. However, how dynamic changes in the chromatin state such as nucleosome occupancy influence the cold-induced AS remains poorly understood. Here, we generated transcriptome (RNA-Seq) and nucleosome positioning (MNase-Seq) data for Arabidopsis thaliana to understand how nucleosome positioning modulates cold-induced AS. Our results show that characteristic nucleosome occupancy levels are strongly associated with the type and abundance of various AS events under normal and cold temperature conditions in Arabidopsis. Intriguingly, exitrons, alternatively spliced internal regions of protein-coding exons, exhibit distinctive nucleosome positioning pattern compared to other alternatively spliced regions. Likewise, nucleosome patterns differ between exitrons and retained introns, pointing to their distinct regulation. Collectively, our data show that characteristic changes in nucleosome positioning modulate AS in plants in response to cold.


Asunto(s)
Arabidopsis , Empalme Alternativo/genética , Arabidopsis/genética , Cromatina , Intrones , Nucleosomas
4.
Nucleic Acids Res ; 47(6): 2716-2726, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30793202

RESUMEN

Plants display exquisite control over gene expression to elicit appropriate responses under normal and stress conditions. Alternative splicing (AS) of pre-mRNAs, a process that generates two or more transcripts from multi-exon genes, adds another layer of regulation to fine-tune condition-specific gene expression in animals and plants. However, exactly how plants control splice isoform ratios and the timing of this regulation in response to environmental signals remains elusive. In mammals, recent evidence indicate that epigenetic and epitranscriptome changes, such as DNA methylation, chromatin modifications and RNA methylation, regulate RNA polymerase II processivity, co-transcriptional splicing, and stability and translation efficiency of splice isoforms. In plants, the role of epigenetic modifications in regulating transcription rate and mRNA abundance under stress is beginning to emerge. However, the mechanisms by which epigenetic and epitranscriptomic modifications regulate AS and translation efficiency require further research. Dynamic changes in the chromatin landscape in response to stress may provide a scaffold around which gene expression, AS and translation are orchestrated. Finally, we discuss CRISPR/Cas-based strategies for engineering chromatin architecture to manipulate AS patterns (or splice isoforms levels) to obtain insight into the epigenetic regulation of AS.


Asunto(s)
Empalme Alternativo/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Animales , Arabidopsis/genética , Metilación de ADN/genética , Epigénesis Genética/fisiología , Redes Reguladoras de Genes/genética , Humanos , Transcripción Genética/genética
5.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502129

RESUMEN

Size control is a fundamental question in biology, showing incremental complexity in plants, whose cells possess a rigid cell wall. The phytohormone auxin is a vital growth regulator with central importance for differential growth control. Our results indicate that auxin-reliant growth programs affect the molecular complexity of xyloglucans, the major type of cell wall hemicellulose in eudicots. Auxin-dependent induction and repression of growth coincide with reduced and enhanced molecular complexity of xyloglucans, respectively. In agreement with a proposed function in growth control, genetic interference with xyloglucan side decorations distinctly modulates auxin-dependent differential growth rates. Our work proposes that auxin-dependent growth programs have a spatially defined effect on xyloglucan's molecular structure, which in turn affects cell wall mechanics and specifies differential, gravitropic hypocotyl growth.


Asunto(s)
Glucanos/metabolismo , Ácidos Indolacéticos/metabolismo , Células Vegetales/metabolismo , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Xilanos/metabolismo , Arabidopsis/fisiología , Pared Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica de las Plantas , Glucanos/química , Pisum sativum/fisiología , Transducción de Señal , Xilanos/química
6.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899394

RESUMEN

Plants adjust their architecture to a constantly changing environment, requiring adaptation of differential growth. Despite their importance, molecular switches, which define growth transitions, are largely unknown. Apical hook development in dark grown Arabidopsis thaliana (A. thaliana) seedlings serves as a suitable model for differential growth transition in plants. Here, we show that the phytohormone auxin counteracts the light-induced growth transition during apical hook opening. We, subsequently, identified genes which are inversely regulated by light and auxin. We used in silico analysis of the regulatory elements in this set of genes and subsequently used natural variation in gene expression to uncover correlations between underlying transcription factors and the in silico predicted target genes. This approach uncovered that MADS box transcription factor AGAMOUS-LIKE 8 (AGL8)/FRUITFULL (FUL) modulates apical hook opening. Our data shows that transient FUL expression represses the expression of growth stimulating genes during early phases of apical hook development and therewith guards the transition to growth promotion for apical hook opening. Here, we propose a role for FUL in setting tissue identity, thereby regulating differential growth during apical hook development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Represoras/metabolismo , Plantones/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Represoras/genética , Plantones/genética , Plantones/metabolismo , Transducción de Señal
7.
Nucleic Acids Res ; 45(9): 5061-5073, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28402429

RESUMEN

Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.


Asunto(s)
Empalme Alternativo , Arabidopsis/genética , Genes de Insecto , Transcriptoma , Variación Genética , Proteómica , ARN no Traducido , Valores de Referencia , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transcripción Genética
8.
Genome Res ; 25(7): 995-1007, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25934563

RESUMEN

Alternative splicing (AS) diversifies transcriptomes and proteomes and is widely recognized as a key mechanism for regulating gene expression. Previously, in an analysis of intron retention events in Arabidopsis, we found unusual AS events inside annotated protein-coding exons. Here, we also identify such AS events in human and use these two sets to analyse their features, regulation, functional impact, and evolutionary origin. As these events involve introns with features of both introns and protein-coding exons, we name them exitrons (exonic introns). Though exitrons were detected as a subset of retained introns, they are clearly distinguishable, and their splicing results in transcripts with different fates. About half of the 1002 Arabidopsis and 923 human exitrons have sizes of multiples of 3 nucleotides (nt). Splicing of these exitrons results in internally deleted proteins and affects protein domains, disordered regions, and various post-translational modification sites, thus broadly impacting protein function. Exitron splicing is regulated across tissues, in response to stress and in carcinogenesis. Intriguingly, annotated intronless genes can be also alternatively spliced via exitron usage. We demonstrate that at least some exitrons originate from ancestral coding exons. Based on our findings, we propose a "splicing memory" hypothesis whereby upon intron loss imprints of former exon borders defined by vestigial splicing regulatory elements could drive the evolution of exitron splicing. Altogether, our studies show that exitron splicing is a conserved strategy for increasing proteome plasticity in plants and animals, complementing the repertoire of AS events.


Asunto(s)
Empalme Alternativo , Exones , Intrones , Sistemas de Lectura Abierta , Proteómica , Arabidopsis/genética , Arabidopsis/metabolismo , Neoplasias de la Mama , Evolución Molecular , Femenino , Regulación de la Expresión Génica de las Plantas , Humanos , Especificidad de Órganos/genética , Biosíntesis de Proteínas , Transporte de ARN , Estrés Fisiológico/genética , Transcriptoma
9.
Plant Cell ; 27(8): 2083-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26286536

RESUMEN

Transcript annotation in plant databases is incomplete and often inaccurate, leading to misinterpretation. As more and more RNA-seq data are generated, plant scientists need to be aware of potential pitfalls and understand the nature and impact of specific alternative splicing transcripts on protein production. A primary area of concern and the topic of this article is the (mis)annotation of open reading frames and premature termination codons. The basic message is that to adequately address expression and functions of transcript isoforms, it is necessary to be able to predict their fate in terms of whether protein isoforms are generated or specific transcripts are unproductive or degraded.


Asunto(s)
Empalme Alternativo , Proteínas de Plantas/genética , Plantas/genética , Biosíntesis de Proteínas/genética , Modelos Genéticos , Sistemas de Lectura Abierta/genética , Isoformas de Proteínas/genética , Estabilidad del ARN , ARN Mensajero/genética
10.
Plant Cell ; 25(10): 3657-83, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24179125

RESUMEN

Alternative splicing (AS) of precursor mRNAs (pre-mRNAs) from multiexon genes allows organisms to increase their coding potential and regulate gene expression through multiple mechanisms. Recent transcriptome-wide analysis of AS using RNA sequencing has revealed that AS is highly pervasive in plants. Pre-mRNAs from over 60% of intron-containing genes undergo AS to produce a vast repertoire of mRNA isoforms. The functions of most splice variants are unknown. However, emerging evidence indicates that splice variants increase the functional diversity of proteins. Furthermore, AS is coupled to transcript stability and translation through nonsense-mediated decay and microRNA-mediated gene regulation. Widespread changes in AS in response to developmental cues and stresses suggest a role for regulated splicing in plant development and stress responses. Here, we review recent progress in uncovering the extent and complexity of the AS landscape in plants, its regulation, and the roles of AS in gene regulation. The prevalence of AS in plants has raised many new questions that require additional studies. New tools based on recent technological advances are allowing genome-wide analysis of RNA elements in transcripts and of chromatin modifications that regulate AS. Application of these tools in plants will provide significant new insights into AS regulation and crosstalk between AS and other layers of gene regulation.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta , Epigénesis Genética , Precursores del ARN/genética , ARN de Planta/genética , Transducción de Señal , Empalmosomas/metabolismo
11.
Genome Res ; 22(6): 1184-95, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22391557

RESUMEN

Alternative splicing (AS) is a key regulatory mechanism that contributes to transcriptome and proteome diversity. As very few genome-wide studies analyzing AS in plants are available, we have performed high-throughput sequencing of a normalized cDNA library which resulted in a high coverage transcriptome map of Arabidopsis. We detect ∼150,000 splice junctions derived mostly from typical plant introns, including an eightfold increase in the number of U12 introns (2069). Around 61% of multiexonic genes are alternatively spliced under normal growth conditions. Moreover, we provide experimental validation of 540 AS transcripts (from 256 genes coding for important regulatory factors) using high-resolution RT-PCR and Sanger sequencing. Intron retention (IR) is the most frequent AS event (∼40%), but many IRs have relatively low read coverage and are less well-represented in assembled transcripts. Additionally, ∼51% of Arabidopsis genes produce AS transcripts which do not involve IR. Therefore, the significance of IR in generating transcript diversity was generally overestimated in previous assessments. IR analysis allowed the identification of a large set of cryptic introns inside annotated coding exons. Importantly, a significant fraction of these cryptic introns are spliced out in frame, indicating a role in protein diversity. Furthermore, we show extensive AS coupled to nonsense-mediated decay in AFC2, encoding a highly conserved LAMMER kinase which phosphorylates splicing factors, thus establishing a complex loop in AS regulation. We provide the most comprehensive analysis of AS to date which will serve as a valuable resource for the plant community to study transcriptome complexity and gene regulation.


Asunto(s)
Empalme Alternativo , Arabidopsis/genética , Genoma de Planta , Intrones , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Exones , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Serina-Treonina Quinasas/genética , Transcriptoma
12.
New Phytol ; 208(1): 96-101, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26111100

RESUMEN

RNA-sequencing (RNA-seq) allows global gene expression analysis at the individual transcript level. Accurate quantification of transcript variants generated by alternative splicing (AS) remains a challenge. We have developed a comprehensive, nonredundant Arabidopsis reference transcript dataset (AtRTD) containing over 74 000 transcripts for use with algorithms to quantify AS transcript isoforms in RNA-seq. The AtRTD was formed by merging transcripts from TAIR10 and novel transcripts identified in an AS discovery project. We have estimated transcript abundance in RNA-seq data using the transcriptome-based alignment-free programmes Sailfish and Salmon and have validated quantification of splicing ratios from RNA-seq by high resolution reverse transcription polymerase chain reaction (HR RT-PCR). Good correlations between splicing ratios from RNA-seq and HR RT-PCR were obtained demonstrating the accuracy of abundances calculated for individual transcripts in RNA-seq. The AtRTD is a resource that will have immediate utility in analysing Arabidopsis RNA-seq data to quantify differential transcript abundance and expression.


Asunto(s)
Empalme Alternativo , Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Isoformas de Proteínas/análisis , ARN Mensajero/análisis , Análisis de Secuencia de ARN/métodos , Algoritmos , Secuencia de Bases , Conjuntos de Datos como Asunto , Genes de Plantas , Empalme del ARN , Valores de Referencia , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Programas Informáticos , Transcriptoma
13.
EMBO Rep ; 14(7): 622-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23681439

RESUMEN

Plant MIR genes are independent transcription units that encode long primary miRNA precursors, which usually contain introns. For two miRNA genes, MIR163 and MIR161, we show that introns are crucial for the accumulation of proper levels of mature miRNA. Removal of the intron in both cases led to a drop-off in the level of mature miRNAs. We demonstrate that the stimulating effects of the intron mostly reside in the 5'ss rather than on a genuine splicing event. Our findings are biologically significant as the presence of functional splice sites in the MIR163 gene appears mandatory for pathogen-triggered accumulation of miR163 and proper regulation of at least one of its targets.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Intrones , MicroARNs/genética , Precursores del ARN/genética , Empalme Alternativo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , MicroARNs/biosíntesis , Mutación , Poli A/genética , Poli A/metabolismo , Pseudomonas syringae/fisiología , Precursores del ARN/biosíntesis
14.
Nucleic Acids Res ; 41(3): 1783-96, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23248006

RESUMEN

AtCyp59 is a multidomain cyclophilin containing a peptidyl-prolyl cis/trans isomerase (PPIase) domain and an evolutionarily highly conserved RRM domain. Deregulation of this class of cyclophilins has been shown to affect transcription and to influence phosphorylation of the C-terminal repeat domain of the largest subunit of the RNA polymerase II. We used a genomic SELEX method for identifying RNA targets of AtCyp59. Analysis of the selected RNAs revealed an RNA-binding motif (G[U/C]N[G/A]CC[A/G]) and we show that it is evolutionarily conserved. Binding to this motif was verified by gel shift assays in vitro and by RNA immunopreciptation assays of AtCyp59 in vivo. Most importantly, we show that binding also occurs on unprocessed transcripts in vivo and that binding of specific RNAs inhibits the PPIase activity of AtCyp59 in vitro. Surprisingly, genome-wide analysis showed that the RNA motif is present in about 70% of the annotated transcripts preferentially in exons. Taken together, the available data suggest that these cyclophilins might have an important function in transcription regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ciclofilinas/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Genómica/métodos , Motivos de Nucleótidos , ARN Polimerasa II/metabolismo , ARN de Planta/química , ARN de Planta/metabolismo
15.
RNA Biol ; 11(10): 1215-20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25590224

RESUMEN

Gene expression regulation relies on a variety of molecular mechanisms affecting different steps of a messenger RNA (mRNA) life: transcription, processing, splicing, alternative splicing, transport, translation, storage and decay. Light induces massive reprogramming of gene expression in plants. Differences in alternative splicing patterns in response to environmental stimuli suggest that alternative splicing plays an important role in plant adaptation to changing life conditions. In a recent publication, our laboratories showed that light regulates alternative splicing of a subset of Arabidopsis genes encoding proteins involved in RNA processing by chloroplast retrograde signals. The light effect on alternative splicing is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. These results point at alternative splicing regulation by retrograde signals as an important mechanism for plant adaptation to their environment.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Luz , Fotosíntesis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación
16.
Nucleic Acids Res ; 40(6): 2454-69, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22127866

RESUMEN

Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT-PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5' or 3'UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3'-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes.


Asunto(s)
Empalme Alternativo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes Reguladores , Degradación de ARNm Mediada por Codón sin Sentido , Regiones no Traducidas 3' , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Codón Iniciador , Codón sin Sentido , Cicloheximida/farmacología , Genes de Plantas , Intrones , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Helicasas/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Plant Cell ; 22(9): 2926-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20884799

RESUMEN

Growing interest in alternative splicing in plants and the extensive sequencing of new plant genomes necessitate more precise definition and classification of genes coding for splicing factors. SR proteins are a family of RNA binding proteins, which function as essential factors for constitutive and alternative splicing. We propose a unified nomenclature for plant SR proteins, taking into account the newly revised nomenclature of the mammalian SR proteins and a number of plant-specific properties of the plant proteins. We identify six subfamilies of SR proteins in Arabidopsis thaliana and rice (Oryza sativa), three of which are plant specific. The proposed subdivision of plant SR proteins into different subfamilies will allow grouping of paralogous proteins and simple assignment of newly discovered SR orthologs from other plant species and will promote functional comparisons in diverse plant species.


Asunto(s)
Arabidopsis/química , Proteínas Nucleares/clasificación , Oryza/química , Proteínas de Plantas/clasificación , Proteínas de Unión al ARN/clasificación , Arabidopsis/genética , Oryza/genética , Factores de Empalme Serina-Arginina , Terminología como Asunto
18.
Genome Biol ; 23(1): 149, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799267

RESUMEN

BACKGROUND: Accurate and comprehensive annotation of transcript sequences is essential for transcript quantification and differential gene and transcript expression analysis. Single-molecule long-read sequencing technologies provide improved integrity of transcript structures including alternative splicing, and transcription start and polyadenylation sites. However, accuracy is significantly affected by sequencing errors, mRNA degradation, or incomplete cDNA synthesis. RESULTS: We present a new and comprehensive Arabidopsis thaliana Reference Transcript Dataset 3 (AtRTD3). AtRTD3 contains over 169,000 transcripts-twice that of the best current Arabidopsis transcriptome and including over 1500 novel genes. Seventy-eight percent of transcripts are from Iso-seq with accurately defined splice junctions and transcription start and end sites. We develop novel methods to determine splice junctions and transcription start and end sites accurately. Mismatch profiles around splice junctions provide a powerful feature to distinguish correct splice junctions and remove false splice junctions. Stratified approaches identify high-confidence transcription start and end sites and remove fragmentary transcripts due to degradation. AtRTD3 is a major improvement over existing transcriptomes as demonstrated by analysis of an Arabidopsis cold response RNA-seq time-series. AtRTD3 provides higher resolution of transcript expression profiling and identifies cold-induced differential transcription start and polyadenylation site usage. CONCLUSIONS: AtRTD3 is the most comprehensive Arabidopsis transcriptome currently. It improves the precision of differential gene and transcript expression, differential alternative splicing, and transcription start/end site usage analysis from RNA-seq data. The novel methods for identifying accurate splice junctions and transcription start/end sites are widely applicable and will improve single-molecule sequencing analysis from any species.


Asunto(s)
Arabidopsis , Transcriptoma , Empalme Alternativo , Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , RNA-Seq , Análisis de Secuencia de ARN/métodos
19.
Cell Rep ; 36(10): 109676, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496244

RESUMEN

For plants, light is the source of energy and the most relevant regulator of growth and adaptations to the environment by inducing changes in gene expression at various levels, including alternative splicing. Light-triggered chloroplast retrograde signals control alternative splicing in Arabidopsis thaliana. Here, we provide evidence that light regulates the expression of a core set of splicing-related factors in roots. Alternative splicing responses in roots are not directly caused by light but are instead most likely triggered by photosynthesized sugars. The target of rapamycin (TOR) kinase plays a key role in this shoot-to-root signaling pathway. Knocking down TOR expression or pharmacologically inhibiting TOR activity disrupts the alternative splicing responses to light and exogenous sugars in roots. Consistently, splicing decisions are modulated by mitochondrial activity in roots. In conclusion, by activating the TOR pathway, sugars act as mobile signals to coordinate alternative splicing responses to light throughout the whole plant.


Asunto(s)
Empalme Alternativo/genética , Luz , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas , Sirolimus/metabolismo
20.
Biochem Soc Trans ; 38(2): 667-71, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20298240

RESUMEN

AS (alternative splicing) is a post-transcriptional process which regulates gene expression through increasing protein complexity and modulating mRNA transcript levels. Regulation of AS depends on interactions between trans-acting protein factors and cis-acting signals in the pre-mRNA (precursor mRNA) transcripts, termed 'combinatorial' control. Dynamic changes in AS patterns reflect changes in abundance, composition and activity of splicing factors in different cell types and in response to cellular or environmental cues. Whereas the SR protein family of splicing factors is well-studied in plants, relatively little is known about other factors influencing the regulation of AS or the consequences of AS on mRNA levels and protein function. To address fundamental questions on AS in plants, we are exploiting a high-resolution RT (reverse transcription)-PCR system to analyse multiple AS events simultaneously. In the present paper, we describe the current applications and development of the AS RT-PCR panel in investigating the roles of splicing factors, cap-binding proteins and nonsense-mediated decay proteins on AS, and examining the extent of AS in genes involved in the same developmental pathway or process.


Asunto(s)
Empalme Alternativo/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Plantas/genética , Empalme Alternativo/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Desarrollo de la Planta , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA