Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell ; 165(7): 1803-1817, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27180908

RESUMEN

A scalable and high-throughput method to identify precise subcellular localization of endogenous proteins is essential for integrative understanding of a cell at the molecular level. Here, we developed a simple and generalizable technique to image endogenous proteins with high specificity, resolution, and contrast in single cells in mammalian brain tissue. The technique, single-cell labeling of endogenous proteins by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated homology-directed repair (SLENDR), uses in vivo genome editing to insert a sequence encoding an epitope tag or a fluorescent protein to a gene of interest by CRISPR-Cas9-mediated homology-directed repair (HDR). Single-cell, HDR-mediated genome editing was achieved by delivering the editing machinery to dividing neuronal progenitors through in utero electroporation. We demonstrate that SLENDR allows rapid determination of the localization and dynamics of many endogenous proteins in various cell types, regions, and ages in the brain. Thus, SLENDR provides a high-throughput platform to map the subcellular localization of endogenous proteins with the resolution of micro- to nanometers in the brain.


Asunto(s)
Química Encefálica , Mapeo Encefálico/métodos , Proteínas del Tejido Nervioso/análisis , Encéfalo/embriología , Sistemas CRISPR-Cas , Ingeniería Genética , Neuroimagen/métodos , Neuronas/química , Análisis de la Célula Individual
2.
Nature ; 590(7844): 111-114, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33328635

RESUMEN

Single neocortical neurons are driven by populations of excitatory inputs, which form the basis of neuronal selectivity to features of sensory input. Excitatory connections are thought to mature during development through activity-dependent Hebbian plasticity1, whereby similarity between presynaptic and postsynaptic activity selectively strengthens some synapses and weakens others2. Evidence in support of this process includes measurements of synaptic ultrastructure and in vitro and in vivo physiology and imaging studies3-8. These corroborating lines of evidence lead to the prediction that a small number of strong synaptic inputs drive neuronal selectivity, whereas weak synaptic inputs are less correlated with the somatic output and modulate activity overall6,7. Supporting evidence from cortical circuits, however, has been limited to measurements of neighbouring, connected cell pairs, raising the question of whether this prediction holds for a broad range of synapses converging onto cortical neurons. Here we measure the strengths of functionally characterized excitatory inputs contacting single pyramidal neurons in ferret primary visual cortex (V1) by combining in vivo two-photon synaptic imaging and post hoc electron microscopy. Using electron microscopy reconstruction of individual synapses as a metric of strength, we find no evidence that strong synapses have a predominant role in the selectivity of cortical neuron responses to visual stimuli. Instead, selectivity appears to arise from the total number of synapses activated by different stimuli. Moreover, spatial clustering of co-active inputs appears to be reserved for weaker synapses, enhancing the contribution of weak synapses to somatic responses. Our results challenge the role of Hebbian mechanisms in shaping neuronal selectivity in cortical circuits, and suggest that selectivity reflects the co-activation of large populations of presynaptic neurons with similar properties and a mixture of strengths.


Asunto(s)
Vías Nerviosas , Células Piramidales/metabolismo , Sinapsis/metabolismo , Corteza Visual/citología , Corteza Visual/fisiología , Animales , Femenino , Hurones , Microscopía Electrónica de Rastreo , Modelos Neurológicos , Estimulación Luminosa , Células Piramidales/ultraestructura , Sinapsis/ultraestructura
3.
Glia ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856149

RESUMEN

Most excitatory synapses in the mammalian brain are contacted or ensheathed by astrocyte processes, forming tripartite synapses. Astrocytes are thought to be critical regulators of the structural and functional dynamics of synapses. While the degree of synaptic coverage by astrocytes is known to vary across brain regions and animal species, the reason for and implications of this variability remains unknown. Further, how astrocyte coverage of synapses relates to in vivo functional properties of individual synapses has not been investigated. Here, we characterized astrocyte coverage of synapses of pyramidal neurons in the ferret visual cortex and, using correlative light and electron microscopy, examined their relationship to synaptic strength and sensory-evoked Ca2+ activity. Nearly, all synapses were contacted by astrocytes, and most were contacted along the axon-spine interface. Structurally, we found that the degree of synaptic astrocyte coverage directly scaled with synapse size and postsynaptic density complexity. Functionally, we found that the amount of astrocyte coverage scaled with how selectively a synapse responds to a particular visual stimulus and, at least for the largest synapses, scaled with the reliability of visual stimuli to evoke postsynaptic Ca2+ events. Our study shows astrocyte coverage is highly correlated with structural metrics of synaptic strength of excitatory synapses in the visual cortex and demonstrates a previously unknown relationship between astrocyte coverage and reliable sensory activation.

4.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34732574

RESUMEN

Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.


Asunto(s)
Empalme Alternativo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Sinapsis/metabolismo , Animales , Canales de Calcio/metabolismo , Ratones , Ratones Noqueados , Isoformas de Proteínas/metabolismo , Proteoma , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética
5.
Proc Natl Acad Sci U S A ; 117(38): 23914-23924, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32879010

RESUMEN

Establishment of functional synaptic connections in a selective manner is essential for nervous system operation. In mammalian retinas, rod and cone photoreceptors form selective synaptic connections with different classes of bipolar cells (BCs) to propagate light signals. While there has been progress in elucidating rod wiring, molecular mechanisms used by cones to establish functional synapses with BCs have remained unknown. Using an unbiased proteomic strategy in cone-dominant species, we identified the cell-adhesion molecule ELFN2 to be pivotal for the functional wiring of cones with the ON type of BC. It is selectively expressed in cones and transsynaptically recruits the key neurotransmitter receptor mGluR6 in ON-BCs to enable synaptic transmission. Remarkably, ELFN2 in cone terminals functions in synergy with a related adhesion molecule, ELFN1, and their concerted interplay during development specifies selective wiring and transmission of cone signals. These findings identify a synaptic connectivity mechanism of cones and illustrate how interplay between adhesion molecules and postsynaptic transmitter receptors orchestrates functional synaptic specification in a neural circuit.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Sinapsis/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Células Bipolares de la Retina/metabolismo
6.
J Neurosci ; 41(33): 7003-7014, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34266899

RESUMEN

The structural plasticity of dendritic spines is considered to be an important basis of synaptic plasticity, learning, and memory. Here, we induced input-specific structural LTP (sLTP) in single dendritic spines in organotypic hippocampal slices from mice of either sex and performed ultrastructural analyses of the spines using efficient correlative light and electron microscopy. We observed reorganization of the PSD nanostructure, such as perforation and segmentation, at 2-3, 20, and 120 min after sLTP induction. In addition, PSD and nonsynaptic axon-spine interface (nsASI) membrane expanded unevenly during sLTP. Specifically, the PSD area showed a transient increase at 2-3 min after sLTP induction. The PSD growth was to a degree less than spine volume growth at 2-3 min and 20 min after sLTP induction but became similar at 120 min. On the other hand, the nsASI area showed a profound and lasting expansion, to a degree similar to spine volume growth throughout the process. These rapid ultrastructural changes in PSD and surrounding membrane may contribute to rapid electrophysiological plasticity during sLTP.SIGNIFICANCE STATEMENT To understand the ultrastructural changes during synaptic plasticity, it is desired to efficiently image single dendritic spines that underwent structural plasticity in electron microscopy. We induced structural long-term potentiation (sLTP) in single dendritic spines by two-photon glutamate uncaging. We then identified the same spines at different phases of sLTP and performed ultrastructural analysis by using an efficient correlative light and electron microscopy method. We found that postsynaptic density undergoes dramatic modification in its structural complexity immediately after sLTP induction. Meanwhile, the nonsynaptic axon-spine interface area shows a rapid and sustained increase throughout sLTP. Our results indicate that the uneven modification of synaptic and nonsynaptic postsynaptic membrane might contribute to rapid electrophysiological plasticity during sLTP.


Asunto(s)
Espinas Dendríticas/ultraestructura , Hipocampo/ultraestructura , Potenciación a Largo Plazo , Densidad Postsináptica/ultraestructura , Animales , Axones/ultraestructura , Biolística , Membrana Celular/ultraestructura , Espinas Dendríticas/fisiología , Femenino , Glutamatos/efectos de la radiación , Procesamiento de Imagen Asistido por Computador , Indoles/efectos de la radiación , Masculino , Ratones , Microscopía Electrónica de Rastreo , Fotoquímica
7.
J Physiol ; 600(9): 2165-2187, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35194785

RESUMEN

Dendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs). The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head. Thus, voltage-gated and calcium-activated potassium channels located in the spine head likely play a key role in synaptic transmission. Here we study the presence and function of large conductance calcium-activated potassium (BK) channels in spines from layer 5 PNs. We found that BK channels are localized to dendrites and spines regardless of their size, but their activity can only be detected in spines with small head volumes (≤0.09 µm3 ), which reduces the amplitude of two-photon uncaging excitatory postsynaptic potentials recorded at the soma. In addition, we found that calcium signals in spines with small head volumes are significantly larger than those observed in spines with larger head volumes. In accordance with our experimental data, numerical simulations predict that synaptic inputs impinging onto spines with small head volumes generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, which are sufficient to activate spine BK channels. These results show that BK channels are selectively activated in small-headed spines, suggesting a new level of dendritic spine-mediated regulation of synaptic processing, integration and plasticity in cortical PNs. KEY POINTS: BK channels are expressed in the visual cortex and layer 5 pyramidal neuron somata, dendrites and spines regardless of their size. BK channels are selectively activated in small-headed spines (≤0.09 µm3 ), which reduces the amplitude of two-photon (2P) uncaging excitatory postsynaptic potentials (EPSPs) recorded at the soma. Two-photon imaging revealed that intracellular calcium responses in the head of 2P-activated spines are significantly larger in small-headed spines (≤0.09 µm3 ) than in spines with larger head volumes. In accordance with our experimental data, numerical simulations showed that synaptic inputs impinging onto spines with small head volumes (≤0.09 µm3 ) generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, sufficient to activate spine BK channels and suppress EPSPs.


Asunto(s)
Espinas Dendríticas , Canales de Potasio de Gran Conductancia Activados por el Calcio , Calcio/metabolismo , Dendritas/fisiología , Espinas Dendríticas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Células Piramidales/fisiología
9.
Biophys J ; 120(24): 5575-5591, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34774503

RESUMEN

At chemical synapses, synaptic vesicles release their acidic contents into the cleft, leading to the expectation that the cleft should acidify. However, fluorescent pH probes targeted to the cleft of conventional glutamatergic synapses in both fruit flies and mice reveal cleft alkalinization rather than acidification. Here, using a reaction-diffusion scheme, we modeled pH dynamics at the Drosophila neuromuscular junction as glutamate, ATP, and protons (H+) were released into the cleft. The model incorporates bicarbonate and phosphate buffering systems as well as plasma membrane calcium-ATPase activity and predicts substantial cleft acidification but only for fractions of a millisecond after neurotransmitter release. Thereafter, the cleft rapidly alkalinizes and remains alkaline for over 100 ms because the plasma membrane calcium-ATPase removes H+ from the cleft in exchange for calcium ions from adjacent pre- and postsynaptic compartments, thus recapitulating the empirical data. The extent of synaptic vesicle loading and time course of exocytosis have little influence on the magnitude of acidification. Phosphate but not bicarbonate buffering is effective at suppressing the magnitude and time course of the acid spike, whereas both buffering systems are effective at suppressing cleft alkalinization. The small volume of the cleft levies a powerful influence on the magnitude of alkalinization and its time course. Structural features that open the cleft to adjacent spaces appear to be essential for alleviating the extent of pH transients accompanying neurotransmission.


Asunto(s)
Sinapsis , Vesículas Sinápticas , Animales , Simulación por Computador , Ácido Glutámico/metabolismo , Ratones , Sinapsis/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(11): E2634-E2643, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29487216

RESUMEN

Exposure of cultured primary neurons to preformed α-synuclein fibrils (PFFs) leads to the recruitment of endogenous α-synuclein and its templated conversion into fibrillar phosphorylated α-synuclein (pα-synF) aggregates resembling those involved in Parkinson's disease (PD) pathogenesis. Pα-synF was described previously as inclusions morphologically similar to Lewy bodies and Lewy neurites in PD patients. We discovered the existence of a conformationally distinct, nonfibrillar, phosphorylated α-syn species that we named "pα-syn*." We uniquely describe the existence of pα-syn* in PFF-seeded primary neurons, mice brains, and PD patients' brains. Through immunofluorescence and pharmacological manipulation we showed that pα-syn* results from incomplete autophagic degradation of pα-synF. Pα-synF was decorated with autophagic markers, but pα-syn* was not. Western blots revealed that pα-syn* was N- and C-terminally trimmed, resulting in a 12.5-kDa fragment and a SDS-resistant dimer. After lysosomal release, pα-syn* aggregates associated with mitochondria, inducing mitochondrial membrane depolarization, cytochrome C release, and mitochondrial fragmentation visualized by confocal and stimulated emission depletion nanoscopy. Pα-syn* recruited phosphorylated acetyl-CoA carboxylase 1 (ACC1) with which it remarkably colocalized. ACC1 phosphorylation indicates low ATP levels, AMPK activation, and oxidative stress and induces mitochondrial fragmentation via reduced lipoylation. Pα-syn* also colocalized with BiP, a master regulator of the unfolded protein response and a resident protein of mitochondria-associated endoplasmic reticulum membranes that are sites of mitochondrial fission and mitophagy. Pα-syn* aggregates were found in Parkin-positive mitophagic vacuoles and imaged by electron microscopy. Collectively, we showed that pα-syn* induces mitochondrial toxicity and fission, energetic stress, and mitophagy, implicating pα-syn* as a key neurotoxic α-syn species and a therapeutic target.


Asunto(s)
Autofagia/efectos de los fármacos , Mitofagia/efectos de los fármacos , Neurotoxinas , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Química Encefálica , Técnicas de Cultivo de Célula , Células Cultivadas , Humanos , Lisosomas/metabolismo , Ratones , Mitocondrias , Neurotoxinas/química , Neurotoxinas/metabolismo , Neurotoxinas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fosforilación , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidad
11.
Microsc Microanal ; 27(1): 156-169, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33303051

RESUMEN

Brain circuits are highly interconnected three-dimensional structures fabricated from components ranging vastly in size; from cell bodies to individual synapses. While neuronal activity can be visualized with advanced light microscopy (LM) techniques, the resolution of electron microscopy (EM) is critical for identifying synaptic connections between neurons. Here, we combine these two techniques, affording the advantage of each and allowing for measurements to be made of the same neural features across imaging platforms. We established an EM-label-free workflow utilizing inherent structural features to correlate in vivo two-photon LM and volumetric scanning EM (SEM) in the ferret visual cortex. By optimizing the volume SEM sample preparation protocol, imaging with the OnPoint detector, and utilizing the focal charge compensation device during serial block-face imaging, we achieved sufficient resolution and signal-to-noise ratio to analyze synaptic ultrastructure for hundreds of synapses within sample volumes. Our novel workflow provides a reliable method for quantitatively characterizing synaptic ultrastructure in functionally imaged neurons, providing new insights into neuronal circuit organization.


Asunto(s)
Imagenología Tridimensional , Neuronas , Microscopía Electrónica de Rastreo , Neuronas/ultraestructura
12.
J Neurosci ; 39(41): 7994-8012, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31455662

RESUMEN

The calyx of Held, a large glutamatergic presynaptic terminal in the auditory brainstem undergoes developmental changes to support the high action-potential firing rates required for auditory information encoding. In addition, calyx terminals are morphologically diverse, which impacts vesicle release properties and synaptic plasticity. Mitochondria influence synaptic plasticity through calcium buffering and are crucial for providing the energy required for synaptic transmission. Therefore, it has been postulated that mitochondrial levels increase during development and contribute to the morphological-functional diversity in the mature calyx. However, the developmental profile of mitochondrial volumes and subsynaptic distribution at the calyx of Held remains unclear. To provide insight on this, we developed a helper-dependent adenoviral vector that expresses the genetically encoded peroxidase marker for mitochondria, mito-APEX2, at the mouse calyx of Held. We developed protocols to detect labeled mitochondria for use with serial block face scanning electron microscopy to carry out semiautomated segmentation of mitochondria, high-throughput whole-terminal reconstruction, and presynaptic ultrastructure in mice of either sex. Subsequently, we measured mitochondrial volumes and subsynaptic distributions at the immature postnatal day (P)7 and the mature (P21) calyx. We found an increase of mitochondria volumes in terminals and axons from P7 to P21 but did not observe differences between stalk and swelling subcompartments in the mature calyx. Based on these findings, we propose that mitochondrial volumes and synaptic localization developmentally increase to support high firing rates required in the initial stages of auditory information processing.SIGNIFICANCE STATEMENT Elucidating the developmental processes of auditory brainstem presynaptic terminals is critical to understanding auditory information encoding. Additionally, morphological-functional diversity at these terminals is proposed to enhance coding capacity. Mitochondria provide energy for synaptic transmission and can buffer calcium, impacting synaptic plasticity; however, their developmental profile to ultimately support the energetic demands of synapses following the onset of hearing remains unknown. Therefore, we created a helper-dependent adenoviral vector with the mitochondria-targeting peroxidase mito-APEX2 and expressed it at the mouse calyx of Held. Volumetric reconstructions of serial block face electron microscopy data of immature and mature labeled calyces reveal that mitochondrial volumes are increased to support high firing rates upon maturity.


Asunto(s)
Mitocondrias/fisiología , Tamaño Mitocondrial/fisiología , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Potenciales de Acción , Animales , Axones/metabolismo , Axones/ultraestructura , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/ultraestructura , Calcio/fisiología , Fenómenos Electrofisiológicos/fisiología , Metabolismo Energético/fisiología , Femenino , Vectores Genéticos , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Mitocondrias/ultraestructura , Plasticidad Neuronal , Terminales Presinápticos/ultraestructura
13.
J Physiol ; 598(12): 2431-2452, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32304329

RESUMEN

KEY POINTS: CAST/ELKS are positive regulators of presynaptic growth and are suppressors of active zone expansion at the developing mouse calyx of Held. CAST/ELKS regulate all three CaV 2 subtype channel levels in the presynaptic terminal and not just CaV 2.1. The half-life of ELKS is on the timescale of days and not weeks. Synaptic transmission was not impacted by the loss of CAST/ELKS. CAST/ELKS are involved in pathways regulating morphological properties of presynaptic terminals during an early stage of circuit maturation. ABSTRACT: Many presynaptic active zone (AZ) proteins have multiple regulatory roles that vary during distinct stages of neuronal circuit development. The CAST/ELKS protein family are evolutionarily conserved presynaptic AZ molecules that regulate presynaptic calcium channels, synaptic transmission and plasticity in the mammalian CNS. However, how these proteins regulate synapse development and presynaptic function in a developing neuronal circuit in its native environment is unclear. To unravel the roles of CAST/ELKS in glutamatergic synapse development and in presynaptic function, we used CAST knockout (KO) and ELKS conditional KO (CKO) mice to examine how their loss during the early stages of circuit maturation impacted the calyx of Held presynaptic terminal development and function. Morphological analysis from confocal z-stacks revealed that combined deletion of CAST/ELKS resulted in a reduction in the surface area and volume of the calyx. Analysis of AZ ultrastructure showed that AZ size was increased in the absence of CAST/ELKS. Patch clamp recordings demonstrated a reduction of all presynaptic CaV 2 channel subtype currents that correlated with a loss in presynaptic CaV 2 channel numbers. However, these changes did not impair synaptic transmission and plasticity and synaptic vesicle release kinetics. We conclude that CAST/ELKS proteins are positive regulators of presynaptic growth and are suppressors of AZ expansion and CaV 2 subtype currents and levels during calyx of Held development. We propose that CAST/ELKS are involved in pathways regulating presynaptic morphological properties and CaV 2 channel subtypes and suggest there is developmental compensation to preserve synaptic transmission during early stages of neuronal circuit maturation.


Asunto(s)
Terminales Presinápticos , Sinapsis , Animales , Canales de Calcio , Ratones , Transmisión Sináptica , Vesículas Sinápticas
15.
Proc Natl Acad Sci U S A ; 109(20): 7905-10, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22547806

RESUMEN

The time course of signaling via heterotrimeric G proteins is controlled through their activation by G-protein coupled receptors and deactivation through the action of GTPase accelerating proteins (GAPs). Here we identify RGS7 and RGS11 as the key GAPs in the mGluR6 pathway of retinal rod ON bipolar cells that set the sensitivity and time course of light-evoked responses. We showed using electroretinography and single cell recordings that the elimination of RGS7 did not influence dark-adapted light-evoked responses, but the concurrent elimination of RGS11 severely reduced their magnitude and dramatically slowed the onset of the response. In RGS7/RGS11 double-knockout mice, light-evoked responses in rod ON bipolar cells were only observed during persistent activation of rod photoreceptors that saturate rods. These observations are consistent with persistently high G-protein activity in rod ON bipolar cell dendrites caused by the absence of the dominant GAP, biasing TRPM1 channels to the closed state.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Fototransducción/fisiología , Proteínas RGS/metabolismo , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Transducción de Señal/fisiología , Animales , Western Blotting , Electrorretinografía , Proteínas Activadoras de GTPasa/genética , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Técnicas de Placa-Clamp , Estimulación Luminosa , Proteínas RGS/genética , Células Bipolares de la Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo
16.
J Neurosci ; 33(8): 3668-78, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23426693

RESUMEN

P/Q-type voltage-dependent calcium channels play key roles in transmitter release, integration of dendritic signals, generation of dendritic spikes, and gene expression. High intracellular calcium concentration transient produced by these channels is restricted to tens to hundreds of nanometers from the channels. Therefore, precise localization of these channels along the plasma membrane was long sought to decipher how each neuronal cell function is controlled. Here, we analyzed the distribution of Ca(v)2.1 subunit of the P/Q-type channel using highly sensitive SDS-digested freeze-fracture replica labeling in the rat cerebellar Purkinje cells. The labeling efficiency was such that the number of immunogold particles in each parallel fiber active zone was comparable to that of functional channels calculated from previous reports. Two distinct patterns of Ca(v)2.1 distribution, scattered and clustered, were found in Purkinje cells. The scattered Ca(v)2.1 had a somatodendritic gradient with the density of immunogold particles increasing 2.5-fold from soma to distal dendrites. The other population with 74-fold higher density than the scattered particles was found within clusters of intramembrane particles on the P-face of soma and primary dendrites. Both populations of Ca(v)2.1 were found as early as P3 and increased in the second postnatal week to a mature level. Using double immunogold labeling, we found that virtually all of the Ca(v)2.1 clusters were colocalized with two types of calcium-activated potassium channels, BK and SK2, with the nearest neighbor distance of ∼40 nm. Calcium nanodomain created by the opening of Ca(v)2.1 channels likely activates the two channels that limit the extent of depolarization.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Dendritas/metabolismo , Células de Purkinje/química , Animales , Animales Recién Nacidos , Canales de Calcio Tipo N/ultraestructura , Citoplasma/química , Citoplasma/ultraestructura , Dendritas/ultraestructura , Técnica de Fractura por Congelación/métodos , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/ultraestructura , Ratones , Ratones Noqueados , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Células de Purkinje/ultraestructura , Ratas , Ratas Wistar , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/ultraestructura
17.
Traffic ; 12(6): 726-39, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21401840

RESUMEN

Proper cell morphogenesis requires the co-ordination of cell polarity, cytoskeletal organization and vesicle trafficking. The Schizosaccharomyces pombe mutant pob1-664 has a curious lemon-like shape, the basis of which is not understood. Here, we found abundant vesicle accumulation in these cells, suggesting that Pob1 plays a role in vesicle trafficking. We identified Rho3 as a multicopy suppressor of this phenotype. Because Rho3 function is related to For3, an actin-polymerizing protein, and Sec8, a component of the exocyst complex, we analyzed their functional relationship with Pob1. Pob1 was essential for the formation of actin cables (by interacting with For3) and for the polarized localization of Sec8. Although neither For3 nor Sec8 is essential for polarized growth, their simultaneous disruption prevented tip growth and yielded a lemon-like cell morphology similar to pob1-664. Thus, Pob1 may ensure cylindrical cell shape of S. pombe by coupling actin-mediated vesicle transport and exocyst-mediated vesicle tethering during secretory vesicle targeting.


Asunto(s)
Forma de la Célula , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestructura , Vesículas Secretoras/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Actinas/ultraestructura , Proteínas de Ciclo Celular/metabolismo , Forminas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Unión al GTP rho/genética
18.
J Neurosci ; 32(7): 2357-76, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22396411

RESUMEN

Visual information must be relayed through the lateral geniculate nucleus before it reaches the visual cortex. However, not all spikes created in the retina lead to postsynaptic spikes and properties of the retinogeniculate synapse contribute to this filtering. To understand the mechanisms underlying this filtering process, we conducted electrophysiology to assess the properties of signal transmission in the Long-Evans rat. We also performed SDS-digested freeze-fracture replica labeling to quantify the receptor and transporter distribution, as well as EM reconstruction to describe the 3D structure. To analyze the impact of transmitter diffusion on the activity of the receptors, simulations were integrated. We identified that a large contributor to the filtering is the marked paired-pulse depression at this synapse, which was intensified by the morphological characteristics of the contacts. The broad presynaptic and postsynaptic contact area restricts transmitter diffusion two dimensionally. Additionally, the presence of multiple closely arranged release sites invites intersynaptic spillover, which causes desensitization of AMPA receptors. The presence of AMPA receptors that slowly recover from desensitization along with the high presynaptic release probability and multivesicular release at each synapse also contribute to the depression. These features contrast with many other synapses where spatiotemporal spread of transmitter is limited by rapid transmitter clearance allowing synapses to operate more independently. We propose that the micrometer-order structure can ultimately affect the visual information processing.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Electrofisiología/instrumentación , Electrofisiología/métodos , Cuerpos Geniculados/fisiología , Ratones , Ratones Noqueados , Vías Nerviosas/fisiología , Ratas , Ratas Long-Evans , Receptores AMPA/fisiología , Sinapsis/ultraestructura
19.
J Physiol ; 591(1): 219-39, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23070699

RESUMEN

Establishing the spatiotemporal concentration profile of neurotransmitter following synaptic vesicular release is essential for our understanding of inter-neuronal communication. Such profile is a determinant of synaptic strength, short-term plasticity and inter-synaptic crosstalk. Synaptically released glutamate has been suggested to reach a few millimolar in concentration and last for <1 ms. The synaptic cleft is often conceived as a single concentration compartment, whereas a huge gradient likely exists. Modelling studies have attempted to describe this gradient, but two key parameters, the number of glutamate in a vesicle (N(Glu)) and its diffusion coefficient (D(Glu)) in the extracellular space, remained unresolved. To determine this profile, the rat calyx of Held synapse at postnatal day 12-16 was studied where diffusion of glutamate occurs two-dimensionally and where quantification of AMPA receptor distribution on individual postsynaptic specialization on medial nucleus of the trapezoid body principal cells is possible using SDS-digested freeze-fracture replica labelling. To assess the performance of these receptors as glutamate sensors, a kinetic model of the receptors was constructed from outside-out patch recordings. From here, we simulated synaptic responses and compared them with the EPSC recordings. Combinations of N(Glu) and D(Glu) with an optimum of 7000 and 0.3 µm(2) ms(-1) reproduced the data, suggesting slow diffusion. Further simulations showed that a single vesicle does not saturate the synaptic receptors, and that glutamate spillover does not affect the conductance amplitude at this synapse. Using the estimated profile, we also evaluated how the number of multiple vesicle releases at individual active zones affects the amplitude of postsynaptic signals.


Asunto(s)
Encéfalo/fisiología , Ácido Glutámico/fisiología , Receptores AMPA/fisiología , Sinapsis/fisiología , Animales , Simulación por Computador , Potenciales Postsinápticos Excitadores , Técnicas In Vitro , Modelos Biológicos , Ratas , Ratas Long-Evans , Ratas Wistar
20.
bioRxiv ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37502969

RESUMEN

Postsynaptic mitochondria are critical to the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy (EM) reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally- and structurally-characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA