Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glycobiology ; 33(2): 99-103, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36648443

RESUMEN

Nonulosonic acids or non-2-ulosonic acids (NulOs) are an ancient family of 2-ketoaldonic acids (α-ketoaldonic acids) with a 9-carbon backbone. In nature, these monosaccharides occur either in a 3-deoxy form (referred to as "sialic acids") or in a 3,9-dideoxy "sialic-acid-like" form. The former sialic acids are most common in the deuterostome lineage, including vertebrates, and mimicked by some of their pathogens. The latter sialic-acid-like molecules are found in bacteria and archaea. NulOs are often prominently positioned at the outermost tips of cell surface glycans, and have many key roles in evolution, biology and disease. The diversity of stereochemistry and structural modifications among the NulOs contributes to more than 90 sialic acid forms and 50 sialic-acid-like variants described thus far in nature. This paper reports the curation of these diverse naturally occurring NulOs at the NCBI sialic acid page (https://www.ncbi.nlm.nih.gov/glycans/sialic.html) as part of the NCBI-Glycans initiative. This includes external links to relevant Carbohydrate Structure Databases. As the amino and hydroxyl groups of these monosaccharides are extensively derivatized by various substituents in nature, the Symbol Nomenclature For Glycans (SNFG) rules have been expanded to represent this natural diversity. These developments help illustrate the natural diversity of sialic acids and related NulOs, and enable their systematic representation in publications and online resources.


Asunto(s)
Ácido N-Acetilneuramínico , Ácidos Siálicos , Animales , Ácidos Siálicos/química , Polisacáridos/química , Monosacáridos , Catalogación
2.
Glycobiology ; 26(11): 1157-1170, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27550196

RESUMEN

Recently, we have shown that glycoside hydrolases enzymes of family GH17 from proteobacteria (genera Pseudomonas, Azotobacter) catalyze elongation transfer reactions with laminari-oligosaccharides generating (ß1→3) linkages preferably and to a lesser extent (ß1→6) or (ß1→4) linkages. In the present study, the cloning and characterization of the gene encoding the structurally very similar GH17 domain of the NdvB enzyme from Bradyrhizobium diazoefficiens, designated Glt20, as well as its catalytic properties are described. The Glt20 enzyme was strikingly different from the previously investigated bacterial GH17 enzymes, both regarding substrate specificity and product formation. The Azotobacter and Pseudomonas enzymes cleaved the donor laminari-oligosaccharide substrates three or four moieties from the non-reducing end, generating linear oligosaccharides. In contrast, the Glt20 enzyme cleaved donor laminari-oligosaccharide substrates two glucose moieties from the reducing end, releasing laminaribiose and transferring the remainder to laminari-oligosaccharide acceptor substrates creating only (ß1→3)(ß1→6) branching points. This enables Glt20 to transfer larger oligosaccharide chains than the other type of bacterial enzymes previously described, and helps explain the biologically significant formation of cyclic ß-glucans in B. diazoefficiens.


Asunto(s)
Bradyrhizobium/enzimología , Oligosacáridos/metabolismo , beta-Glucosidasa/metabolismo , Biocatálisis , Proteínas Recombinantes/metabolismo , beta-Glucosidasa/genética
3.
Br J Nutr ; 116(2): 294-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27212112

RESUMEN

Necrotising enterocolitis (NEC) is one of the most frequent and fatal intestinal disorders in preterm infants and has very limited treatment options. Breast-fed infants are at a 6-10-fold lower NEC risk than formula-fed infants, and we have previously shown that human milk oligosaccharides (HMO) improved survival and reduced pathology in a rat NEC model. The HMO disialyllacto-N-tetraose (DSLNT) was most effective, and sialylation was shown to be essential for its protective effect. Galacto-oligosaccharides (GOS), currently added to some infant formula, but not containing sialic acid, had no effect. In addition to DSLNT, our previous work also showed that the neutral HMO fraction, which contains high concentrations of 2'-fucosyllactose (2'FL), slightly improved pathology scores. Here, we assessed the in vivo efficacy of 2'FL, as well as of GOS that we enzymatically sialylated (Sia-GOS). Neonatal rats were randomised into the following study groups - dam-fed (DF), formula-fed (FF), FF containing pooled HMO (10 mg/ml), GOS (8 mg/ml), Sia-GOS (500 µm) or 2'FL (2 mg/ml) - and subjected to the established NEC protocol. The DF and HMO groups had the lowest pathology scores with mean values of 0·67 (sd 0·34) and 0·90 (sd 0·47), respectively. The FF group had significantly elevated pathology scores of 2·02 (sd 0·63). Although the addition of GOS to the formula had no protective effect and generated scores of 2·00 (sd 0·63), the addition of Sia-GOS or 2'FL significantly lowered pathology scores to 1·32 (sd 0·56) (P<0·0034) and 1·43 (sd 0·51) (P<0·0040), respectively. The results warrant further studies to investigate the underlying mechanisms and to assess safety and efficacy in human neonates.


Asunto(s)
Enterocolitis Necrotizante/tratamiento farmacológico , Galactosa/uso terapéutico , Fórmulas Infantiles/química , Leche Humana/química , Oligosacáridos/uso terapéutico , Ácidos Siálicos/uso terapéutico , Trisacáridos/uso terapéutico , Animales , Animales Recién Nacidos , Lactancia Materna , Femenino , Galactosa/metabolismo , Galactosa/farmacología , Humanos , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , Intestinos/efectos de los fármacos , Intestinos/patología , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Distribución Aleatoria , Ratas Sprague-Dawley , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacología , Trisacáridos/farmacología
4.
J Biol Chem ; 289(47): 32773-82, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288798

RESUMEN

Highly conserved glycoside hydrolase family 70 glucansucrases are able to catalyze the synthesis of α-glucans with different structure from sucrose. The structural determinants of glucansucrase specificity have remained unclear. Residue Leu(940) in domain B of GTF180, the glucansucrase of the probiotic bacterium Lactobacillus reuteri 180, was shown to vary in different glucansucrases and is close to the +1 glucosyl unit in the crystal structure of GTF180-ΔN in complex with maltose. Herein, we show that mutations in Leu(940) of wild-type GTF180-ΔN all caused an increased percentage of (α1→6) linkages and a decreased percentage of (α1→3) linkages in the products. α-Glucans with potential different physicochemical properties (containing 67-100% of (α1→6) linkages) were produced by GTF180 and its Leu(940) mutants. Mutant L940W was unable to form (α1→3) linkages and synthesized a smaller and linear glucan polysaccharide with only (α1→6) linkages. Docking studies revealed that the introduction of the large aromatic amino acid residue tryptophan at position 940 partially blocked the binding groove, preventing the isomalto-oligosaccharide acceptor to bind in an favorable orientation for the formation of (α1→3) linkages. Our data showed that the reaction specificity of GTF180 mutant was shifted either to increased polysaccharide synthesis (L940A, L940S, L940E, and L940F) or increased oligosaccharide synthesis (L940W). The L940W mutant is capable of producing a large amount of isomalto-oligosaccharides using released glucose from sucrose as acceptors. Thus, residue Leu(940) in domain B is crucial for linkage and reaction specificity of GTF180. This study provides clear and novel insights into the structure-function relationships of glucansucrase enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicosiltransferasas/metabolismo , Leucina/metabolismo , Limosilactobacillus reuteri/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Conformación de Carbohidratos , Cristalografía por Rayos X , Glucanos/química , Glucanos/metabolismo , Glucosa/química , Glucosa/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Limosilactobacillus reuteri/genética , Leucina/química , Leucina/genética , Maltosa/química , Maltosa/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Oligosacáridos/química , Oligosacáridos/metabolismo , Probióticos , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Sacarosa/química , Sacarosa/metabolismo , Triptófano/química , Triptófano/genética , Triptófano/metabolismo
5.
Appl Microbiol Biotechnol ; 99(14): 5885-94, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25586581

RESUMEN

Glucansucrases are exclusively found in lactic acid bacteria and synthesize a variety of α-glucans from sucrose. They are large multidomain enzymes belonging to the CAZy family 70 of glycoside hydrolase enzymes (GH70). The crystal structure of the N-terminal truncated GTF180 of Lactobacillus reuteri 180 (GTF180-ΔN) revealed that the polypeptide chain follows a U shape course to form five domains, including domains A, B, and C, which resemble those of family GH13 enzymes, and two extra and novel domains (domains IV and V), which are attached to the catalytic core. To elucidate the functional roles of domain V, we have deleted the domain V fragments from both the N- and C-terminal ends (GTF180-ΔNΔV). Truncation of domain V of GTF180-ΔN yielded a catalytically fully active enzyme but with heavily impaired polysaccharide synthesis ability. Instead, GTF180-ΔNΔV produced a large amount of oligosaccharides. Domain V is not involved in determining the linkage specificity, and the size of polysaccharide produced as the polysaccharide produced by GTF180-ΔNΔV was identical in size and structure with that of GTF180-ΔN. The data indicates that GTF180-ΔNΔV acts nonprocessively, frequently initiating synthesis of a new oligosaccharide from sucrose, instead of continuing the synthesis of a full size polysaccharide. Mutations L940E and L940F in GTF180-ΔNΔV, which are involved in the acceptor substrate binding, restored polysaccharide synthesis almost to the level of GTF180-ΔN. These results demonstrated that interactions of growing glucan chains with both domain V and acceptor substrate binding sites are important for polysaccharide synthesis.


Asunto(s)
Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Limosilactobacillus reuteri/metabolismo , Polisacáridos/biosíntesis , Glicosiltransferasas/genética , Limosilactobacillus reuteri/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Eliminación de Secuencia
6.
Glycobiology ; 24(8): 728-39, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24789815

RESUMEN

Human milk oligosaccharides (HMOs) are a major constituent of human breast milk and play an important role in reducing the risk of infections in infants. The structures of these HMOs show similarities with blood group antigens in protein glycosylation, in particular in relation to fucosylation in Lewis blood group-type epitopes, matching the maternal pattern. Previously, based on the Secretor and Lewis blood group system, four milk groups have been defined, i.e. Lewis-positive Secretors, Lewis-positive non-Secretors, Lewis-negative Secretors and Lewis-negative non-Secretors. Here, a rapid one-dimensional (1)H nuclear magnetic resonance (NMR) analysis method is presented that identifies the presence/absence of (α1-2)-, (α1-3)- and (α1-4)-linked fucose residues in HMO samples, affording the essential information to attribute different HMO samples to a specific milk group. The developed method is based on the NMR structural-reporter-group concept earlier established for glycoprotein glycans. Further evaluation of the data obtained from the analysis of 36 HMO samples shows that within each of the four milk groups the relative levels of the different fucosylation epitopes can greatly vary. The data also allow a separation of the Lewis-positive Secretor milk group into two sub-groups.


Asunto(s)
Epítopos/análisis , Antígenos del Grupo Sanguíneo de Lewis/análisis , Leche Humana/química , Oligosacáridos/química , Epítopos/química , Epítopos/inmunología , Humanos , Antígenos del Grupo Sanguíneo de Lewis/química , Antígenos del Grupo Sanguíneo de Lewis/inmunología , Espectroscopía de Resonancia Magnética , Leche Humana/inmunología , Oligosacáridos/análisis , Oligosacáridos/inmunología , Protones
7.
Appl Environ Microbiol ; 80(19): 5984-91, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25063655

RESUMEN

trans-Sialidase (TS) enzymes catalyze the transfer of sialyl (Sia) residues from Sia(α2-3)Gal(ß1-x)-glycans (sialo-glycans) to Gal(ß1-x)-glycans (asialo-glycans). Aiming to apply this concept for the sialylation of linear and branched (Gal)nGlc oligosaccharide mixtures (GOS) using bovine κ-casein-derived glycomacropeptide (GMP) as the sialic acid donor, a kinetic study has been carried out with three components of GOS, i.e., 3'-galactosyl-lactose (ß3'-GL), 4'-galactosyl-lactose (ß4'-GL), and 6'-galactosyl-lactose (ß6'-GL). This prebiotic GOS is prepared from lactose by incubation with suitable ß-galactosidases, whereas GMP is a side-stream product of the dairy industry. The trans-sialidase from Trypanosoma cruzi (TcTS) was expressed in Escherichia coli and purified. Its temperature and pH optima were determined to be 25°C and pH 5.0, respectively. GMP [sialic acid content, 3.6% (wt/wt); N-acetylneuraminic acid (Neu5Ac), >99%; (α2-3)-linked Neu5Ac, 59%] was found to be an efficient sialyl donor, and up to 95% of the (α2-3)-linked Neu5Ac could be transferred to lactose when a 10-fold excess of this acceptor substrate was used. The products of the TcTS-catalyzed sialylation of ß3'-GL, ß4'-GL, and ß6'-GL, using GMP as the sialic acid donor, were purified, and their structures were elucidated by nuclear magnetic resonance spectroscopy. Monosialylated ß3'-GL and ß4'-GL contained Neu5Ac connected to the terminal Gal residue; however, in the case of ß6'-GL, TcTS was shown to sialylate the 3 position of both the internal and terminal Gal moieties, yielding two different monosialylated products and a disialylated structure. Kinetic analyses showed that TcTS had higher affinity for the GL substrates than lactose, while the Vmax and kcat values were higher in the case of lactose.


Asunto(s)
Caseínas/metabolismo , Glicopéptidos/metabolismo , Glicoproteínas/metabolismo , Lactosa/metabolismo , Neuraminidasa/metabolismo , Ácidos Siálicos/metabolismo , Trypanosoma cruzi/enzimología , Animales , Biodiversidad , Caseínas/química , Bovinos , Glicopéptidos/química , Glicoproteínas/genética , Humanos , Lactosa/química , Lactosa/aislamiento & purificación , Leche/química , Leche/metabolismo , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/genética , Oligosacáridos/química , Oligosacáridos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Ácidos Siálicos/análisis , Especificidad por Sustrato , Trypanosoma cruzi/genética , beta-Galactosidasa/metabolismo
8.
Biochim Biophys Acta ; 1820(9): 1444-55, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22245701

RESUMEN

BACKGROUND: Over the years, the N-glycosylation of both human and bovine lactoferrin (LF) has been studied extensively, however not all aspects have been studied in as much detail. Typically, the bovine LF complex-type N-glycans include certain epitopes, not found in human LF N-glycans, i.e. Gal(α1-3)Gal(ß1-4)GlcNAc (αGal), GalNAc(ß1-4)GlcNAc (LacdiNAc), and N-glycolylneuraminic acid (Neu5Gc). The combined presence of complex-type N-glycans, with αGal, LacdiNAc, LacNAc [Gal(ß1-4)GlcNAc], Neu5Ac (N-acetylneuraminic acid), and Neu5Gc epitopes, and oligomannose-type N-glycans complicates the high-throughput analysis of such N-glycoprofiles highly. METHODS: For the structural analysis of enzymatically released N-glycan pools, containing both LacNAc and LacdiNAc epitopes, a prefractionation protocol based on Wisteria floribunda agglutinin affinity chromatography was developed. The sub pools were analysed by MALDI-TOF-MS and HPLC-FD profiling, including sequential exoglycosidase treatments. RESULTS: This protocol separates the N-glycan pool into three sub pools, with (1) free of LacdiNAc epitopes, (2) containing LacdiNAc epitopes, partially shielded by sialic acid, and (3) containing LacdiNAc epitopes, without shielding by sialic acid. Structural analysis by MALDI-TOF-MS and HPLC-FD showed a complex pattern of oligomannose-, hybrid-, and complex-type di-antennary structures, both with, and without LacdiNAc, αGal and sialic acid. CONCLUSIONS: Applying the approach to bovine LF has led to a more detailed N-glycome pattern, including LacdiNAc, αGal, and Neu5Gc epitopes, than was shown in previous studies. GENERAL SIGNIFICANCE: Bovine milk proteins contain glycosylation patterns that are absent in human milk proteins; particularly, the LacdiNAc epitope is abundant. Analysis of bovine milk serum proteins is therefore excessively complicated. The presented sub fractionation protocol allows a thorough analysis of the full scope of bovine milk protein glycosylation. This article is part of a Special Issue entitled Glycoproteomics.


Asunto(s)
Cromatografía de Afinidad/métodos , Lactoferrina/química , Lactoferrina/metabolismo , Lectinas de Plantas/farmacología , Polisacáridos/metabolismo , Animales , Secuencia de Carbohidratos , Bovinos , Glicosilación , Lactoferrina/análisis , Leche/química , Leche/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Molecular , Polisacáridos/análisis , Polisacáridos/química , Receptores N-Acetilglucosamina
9.
Glycobiology ; 23(9): 1084-96, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23804502

RESUMEN

The probiotic bacterium Lactobacillus reuteri 121 produces a complex, branched (1 → 4, 1 → 6)-α-D-glucan as extracellular polysaccharide (reuteran) from sucrose (Suc), using a single glucansucrase/glucosyltransferase (GTFA) enzyme (reuteransucrase). To gain insight into the reaction/product specificity of the GTFA enzyme and the mechanism of reuteran formation, incubations with Suc and/or a series of malto-oligosaccharides (MOSs) (degree of polymerization (DP2-DP6)) were followed in time. The structures of the initially formed products, isolated via high-performance anion-exchange chromatography, were analyzed by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry and 1D/2D (1)H/(13)C NMR spectroscopy. Incubations with Suc only, acting as both donor and acceptor, resulted in elongation of Suc with glucose (Glc) units via alternating (α1 → 4) and (α1 → 6) linkages, yielding linear gluco-oligosaccharides up to at least DP ~ 12. Simultaneously with the ensemble of oligosaccharides, polymeric material was formed early on, suggesting that alternan fragments longer than DP ~ 12 have higher affinity with the GTFA enzyme and are quickly extended, yielding high-molecular-mass branched reuteran (4 × 10(7) Da). MOSs (DP2-DP6) in the absence of Suc turned out to be poor substrates. Incubations of GTFA with Suc plus MOSs as substrates resulted in preferential elongation of MOSs (acceptors) with Glc units from Suc (donor). This apparently reflects the higher affinity of GTFA for MOSs compared with Suc. In accordance with the GTFA specificity, most prominent products were oligosaccharides with an (α1 → 4)/(α1 → 6) alternating structure.


Asunto(s)
Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Oligosacáridos/metabolismo , Sacarosa/metabolismo
10.
Anal Chem ; 85(24): 12037-45, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24229052

RESUMEN

Taking chicken Ovalbumin as a prototypical example of a eukaryotic protein we use high-resolution native electrospray ionization mass spectrometry on a modified Exactive Orbitrap mass analyzer to qualitatively and semiquantitatively dissect 59 proteoforms in the natural protein. This variety is largely induced by the presence of multiple phosphorylation sites and a glycosylation site that we find to be occupied by at least 45 different glycan structures. Mass analysis of the intact protein in its native state is straightforward and fast, requires very little sample preparation, and provides a direct view on the stoichiometry of all different coappearing modifications that are distinguishable in mass. As such, this proof-of-principal analysis shows that native electrospray ionization mass spectrometry in combination with an Orbitrap mass analyzer offers a means to characterize proteins in a manner highly complementary to standard bottom-up shot-gun proteome analysis.


Asunto(s)
Ovalbúmina/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Pollos , Glicosilación , Modelos Moleculares , Ovalbúmina/metabolismo , Fosforilación , Conformación Proteica
11.
Chemistry ; 19(3): 870-9, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23281027

RESUMEN

The glycopeptide CcTx, isolated from the venom of the piscivorous cone snail Conus consors, belongs to the κA-family of conopeptides. These toxins elicit excitotoxic responses in the prey by acting on voltage-gated sodium channels. The structure of CcTx, a first in the κA-family, has been determined by high-resolution NMR spectroscopy together with the analysis of its O-glycan at Ser7. A new type of glycopeptide O-glycan core structure, here registered as core type 9, containing two terminal L-galactose units {α-L-Galp-(1→4)-α-D-GlcpNAc-(1→6)-[α-L-Galp-(1→2)-ß-D-Galp-(1→3)-]α-D-GalpNAc-(1→O)}, is highlighted. A sequence comparison to other putative members of the κA-family suggests that O-linked glycosylation might be more common than previously thought. This observation alone underlines the requirement for more careful and in-depth investigations into this type of post-translational modification in conotoxins.


Asunto(s)
Caracol Conus/química , Glicopéptidos/química , Venenos de Moluscos/química , Animales , Glicosilación , Espectroscopía de Resonancia Magnética , Estructura Molecular
12.
Appl Microbiol Biotechnol ; 97(1): 181-93, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22361861

RESUMEN

Family 70 glycoside hydrolase glucansucrase enzymes exclusively occur in lactic acid bacteria and synthesize a wide range of α-D-glucan (abbreviated as α-glucan) oligo- and polysaccharides. Of the 47 characterized GH70 enzymes, 46 use sucrose as glucose donor. A single GH70 enzyme was recently found to be inactive with sucrose and to utilize maltooligosaccharides [(1→4)-α-D-glucooligosaccharides] as glucose donor substrates for α-glucan synthesis, acting as a 4,6-α-glucanotransferase (4,6-αGT) enzyme. Here, we report the characterization of two further GH70 4,6-αGT enzymes, i.e., from Lactobacillus reuteri strains DSM 20016 and ML1, which use maltooligosaccharides as glucose donor. Both enzymes cleave α1→4 glycosidic linkages and add the released glucose moieties one by one to the non-reducing end of growing linear α-glucan chains via α1→6 glycosidic linkages (α1→4 to α1→6 transfer activity). In this way, they convert pure maltooligosaccharide substrates into linear α-glucan product mixtures with about 50% α1→6 glycosidic bonds (isomalto/maltooligosaccharides). These new α-glucan products may provide an exciting type of carbohydrate for the food industry. The results show that 4,6-αGTs occur more widespread in family GH70 and can be considered as a GH70 subfamily. Sequence analysis allowed identification of amino acid residues in acceptor substrate binding subsites +1 and +2, differing between GH70 GTF and 4,6-αGT enzymes.


Asunto(s)
Glucanos/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Limosilactobacillus reuteri/enzimología , Oligosacáridos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , ADN Bacteriano/química , ADN Bacteriano/genética , Limosilactobacillus reuteri/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
13.
Mar Drugs ; 11(3): 623-42, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23455513

RESUMEN

Conotoxins are small peptides present in the venom of cone snails. The snail uses this venom to paralyze and capture prey. The constituent conopeptides display a high level of chemical diversity and are of particular interest for scientists as tools employed in neurological studies and for drug development, because they target with exquisite specificity membrane receptors, transporters, and various ion channels in the nervous system. However, these peptides are known to contain a high frequency and variability of post-translational modifications-including sometimes O-glycosylation-which are of importance for biological activity. The potential application of specific conotoxins as neuropharmalogical agents and chemical probes requires a full characterization of the relevant peptides, including the structure of the carbohydrate part. In this review, the currently existing knowledge of O-glycosylation of conotoxins is described.


Asunto(s)
Conotoxinas/química , Caracol Conus/química , Diseño de Fármacos , Animales , Conotoxinas/aislamiento & purificación , Conotoxinas/farmacología , Glicosilación , Humanos , Terapia Molecular Dirigida , Procesamiento Proteico-Postraduccional
14.
J Biol Chem ; 286(5): 3520-30, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21097495

RESUMEN

Branching enzyme (EC 2.4.1.18; glycogen branching enzyme; GBE) catalyzes the formation of α1,6-branching points in glycogen. Until recently it was believed that all GBEs belong to glycoside hydrolase family 13 (GH13). Here we describe the cloning and expression of the Thermus thermophilus family GH57-type GBE and report its biochemical properties and crystal structure at 1.35-Å resolution. The enzyme has a central (ß/α)(7)-fold catalytic domain A with an inserted domain B between ß2 and α5 and an α-helix-rich C-terminal domain, which is shown to be essential for substrate binding and catalysis. A maltotriose was modeled in the active site of the enzyme which suggests that there is insufficient space for simultaneously binding of donor and acceptor substrates, and that the donor substrate must be cleaved before acceptor substrate can bind. The biochemical assessment showed that the GH57 GBE possesses about 4% hydrolytic activity with amylose and in vitro forms a glucan product with a novel fine structure, demonstrating that the GH57 GBE is clearly different from the GH13 GBEs characterized to date.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/química , Thermus thermophilus/enzimología , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Dominio Catalítico , Clonación Molecular/métodos , Cristalografía por Rayos X , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Hidrólisis , Conformación Proteica , Especificidad por Sustrato
15.
Glycobiology ; 22(4): 517-28, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22138321

RESUMEN

Recently, a novel glucansucrase (GS)-like gene (gtfB) was isolated from the probiotic bacterium Lactobacillus reuteri 121 and expressed in Escherichia coli. The purified recombinant GTFB enzyme was characterized and turned out to be inactive with sucrose, the natural GS substrate. Instead, GTFB acted on malto-oligosaccharides (MOSs), thereby yielding elongated gluco-oligomers/polymers containing besides (α1 â†’ 4) also (α1 â†’ 6) glycosidic linkages, and it was classified as a 4,6-α-glucanotransferase. To gain more insight into its reaction specificity, incubations of the GTFB enzyme with a series of MOSs and their corresponding alditols [degree of polymerization, DP2(-ol)-DP7(-ol)] were carried out, and (purified) products were structurally analyzed with matrix-assisted laser desorption ionization time-of-flight mass spectrometry and one-/two-dimensional (1)H and (13)C nuclear magnetic resonance spectroscopy. With each of the tested malto-oligomers, the GTFB enzyme yielded series of novel linear isomalto-/malto-oligomers, in the case of DP7 up to DP >35.


Asunto(s)
Proteínas Bacterianas/química , Glucosiltransferasas/química , Limosilactobacillus reuteri/enzimología , Maltosa/química , Oligosacáridos/síntesis química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Cromatografía por Intercambio Iónico , Glucanos/química , Glicosilación , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Proteínas Recombinantes/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Alcoholes del Azúcar/química , Trisacáridos/química
16.
Proc Natl Acad Sci U S A ; 106(37): 15897-902, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19721004

RESUMEN

Hemagglutinin esterases (HEs), closely related envelope glycoproteins in influenza C and corona- and toroviruses, mediate reversible attachment to O-acetylated sialic acids (Sias). They do so by acting both as lectins and as receptor-destroying enzymes, functions exerted by separate protein domains. HE divergence was accompanied by changes in quaternary structure and in receptor and substrate specificity. The selective forces underlying HE diversity and the molecular basis for Sia specificity are poorly understood. Here we present crystal structures of porcine and bovine torovirus HEs in complex with receptor analogs. Torovirus HEs form homodimers with sialate-O-acetylesterase domains almost identical to corresponding domains in orthomyxo- and coronavirus HEs, but with unique lectin sites. Structure-guided biochemical analysis of the esterase domains revealed that a functionally, but not structurally conserved arginine-Sia carboxylate interaction is critical for the binding and positioning of glycosidically bound Sias in the catalytic pocket. Although essential for efficient de-O-acetylation of Sias, this interaction is not required for catalysis nor does it affect substrate specificity. In fact, the distinct preference of the porcine torovirus enzyme for 9-mono- over 7,9-di-O-acetylated Sias can be explained from a single-residue difference with HEs of more promiscuous specificity. Apparently, esterase and lectin pockets coevolved; also the porcine torovirus HE receptor-binding site seems to have been designed to use 9-mono- and exclude di-O-acetylated Sias, possibly as an adaptation to replication in swine. Our findings shed light on HE evolution and provide fundamental insight into mechanisms of substrate binding, substrate recognition, and receptor selection in this important class of virion proteins.


Asunto(s)
Hemaglutininas Virales/química , Hemaglutininas Virales/metabolismo , Torovirus/enzimología , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Sustitución de Aminoácidos , Animales , Dominio Catalítico/genética , Bovinos , Cristalografía por Rayos X , Dimerización , Hemaglutininas Virales/genética , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/metabolismo , Especificidad de la Especie , Especificidad por Sustrato , Porcinos , Torovirus/genética , Proteínas Virales de Fusión/genética
17.
Front Plant Sci ; 13: 981602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204061

RESUMEN

Alginate (alginic acid) is a linear polysaccharide, wherein (1→4)-linked ß-D-mannuronic acid and its C5 epimer, α-L-guluronic acid, are arranged in varying sequences. Alginate lyases catalyze the depolymerization of alginate, thereby cleaving the (1→4) glycosidic linkages between the monomers by a ß-elimination mechanism, to yield unsaturated 4-deoxy-L-erythro-hex-4-enopyranosyluronic acid (Δ) at the non-reducing end of resulting oligosaccharides (α-L-erythro configuration) or, depending on the enzyme, the unsaturated monosaccharide itself. In solution, the released free unsaturated monomer product is further hydrated in a spontaneous (keto-enol tautomerization) process to form two cyclic stereoisomers. In this study, two alginate lyase genes, designated alyRm3 and alyRm4, from the marine thermophilic bacterium Rhodothermus marinus (strain MAT378), were cloned and expressed in Escherichia coli. The recombinant enzymes were characterized, and their substrate specificity and product structures determined. AlyRm3 (PL39) and AlyRm4 (PL17) are among the most thermophilic and thermostable alginate lyases described to date with temperature optimum of activity at ∼75 and 81°C, respectively. The pH optimum of activity of AlyRm3 is ∼5.5 and AlyRm4 at pH 6.5. Detailed NMR analysis of the incubation products demonstrated that AlyRm3 is an endolytic lyase, while AlyRm4 is an exolytic lyase, cleaving monomers from the non-reducing end of oligo/poly-alginates.

18.
Glycobiology ; 21(3): 304-28, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21030539

RESUMEN

Over the years several ß-glucan transferases from yeast and fungi have been reported, but enzymes with such an activity from bacteria have not been characterized so far. In this work, we describe the cloning and expression of genes encoding ß-glucosyltransferase domains of glycosyl hydrolase family GH17 from three species of proteobacteria: Pseudomonas aeruginosa PAO1, P. putida KT2440 and Azotobacter vinelandii ATCC BAA-1303. The encoded enzymes of these GH17 domains turned out to have a non-Leloir trans-ß-glucosylation activity, as they do not use activated nucleotide sugar as donor, but transfer a glycosyl group from a ß-glucan donor to a ß-glucan acceptor. More particularly, the activity of the three recombinant enzymes on linear (ß1 â†’ 3)-linked gluco-oligosaccharides (Lam-Glc(4-9)) and their corresponding alditols (Lam-Glc(4-9)-ol) was studied. Detailed structural analysis, based on thin-layer chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, electrospray ionization mass spectrometry, and 1D/2D (1)H and (13)C nuclear magnetic resonance data, revealed diverse product spectra. Depending on the enzyme used, besides (ß1 â†’ 3)-elongation activity, (ß1 â†’ 4)- or (ß1 â†’ 6)-elongation, or (ß1 â†’ 6)-branching activities were also detected.


Asunto(s)
Azotobacter vinelandii/enzimología , Glucosiltransferasas/biosíntesis , Polisacáridos/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas putida/enzimología , Pruebas de Enzimas , Glucanos , Glucosiltransferasas/química , Modelos Moleculares , Estructura Molecular , Conformación Proteica , beta-Glucanos/química
19.
Glycobiology ; 21(4): 493-502, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21106561

RESUMEN

The EUROCarbDB project is a design study for a technical framework, which provides sophisticated, freely accessible, open-source informatics tools and databases to support glycobiology and glycomic research. EUROCarbDB is a relational database containing glycan structures, their biological context and, when available, primary and interpreted analytical data from high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance experiments. Database content can be accessed via a web-based user interface. The database is complemented by a suite of glycoinformatics tools, specifically designed to assist the elucidation and submission of glycan structure and experimental data when used in conjunction with contemporary carbohydrate research workflows. All software tools and source code are licensed under the terms of the Lesser General Public License, and publicly contributed structures and data are freely accessible. The public test version of the web interface to the EUROCarbDB can be found at http://www.ebi.ac.uk/eurocarb.


Asunto(s)
Carbohidratos/química , Bases de Datos como Asunto , Programas Informáticos , Animales , Conformación de Carbohidratos , Biología Computacional , Glicómica , Humanos , Modelos Moleculares , Peso Molecular , Sistemas en Línea
20.
Chembiochem ; 12(15): 2246-64, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-21956798

RESUMEN

trans-Sialidases constitute a special group of the sialidase family. They occur in some trypanosome species and, in a unique reversible reaction, transfer sialic acids from one glycosidic linkage with galactose (donor) to another galactose (acceptor), to form (α2-3)-sialyl linkages. Trypanosomes cause such devastating human diseases as Chagas disease in South America (Trypanosoma cruzi) or sleeping sickness in Africa (Trypanosoma brucei). The trans-sialidases strongly contribute to the pathogenicity of the trypanosomes by scavenging sialic acids from the host or blood meal to coat the parasite surface; this aids their survival strategy in the insect's intestine, and in the blood circulation or cells of the host, and serves to compromise the immune system of the human or animal host. American and African trypanosomes express trans-sialidases at different stages of their vector/host development. They are transmitted to humans by insect vectors (tsetse fly or other insect "bug" species). trans-Sialidase activity with varying linkage specificity has also been found in a few bacteria species and in human serum. trans-Sialidases are of increasing practical importance for the chemo-enzymatic synthesis of sialylated glycans. The search for appropriate inhibitors of trans-sialidases and vaccination strategies is intensifying, as less toxic medicaments for the treatment of these widespread and often chronic tropical diseases are required.


Asunto(s)
Enfermedad de Chagas/parasitología , Glicoproteínas/metabolismo , Neuraminidasa/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma cruzi/enzimología , Tripanosomiasis Africana/parasitología , Factores de Virulencia/metabolismo , Animales , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/transmisión , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/química , Humanos , Modelos Moleculares , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Trypanosoma/química , Trypanosoma/enzimología , Trypanosoma/patogenicidad , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/patogenicidad , Trypanosoma cruzi/química , Trypanosoma cruzi/patogenicidad , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/transmisión , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA