Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Evol ; 13(10): e10573, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37780082

RESUMEN

We examine the population genetic structure and divergence among the regional populations of the Japanese honeybee, Apis cerana japonica, by re-sequencing the genomes of 105 individuals from the three main Japanese islands with diverse climates. The genetic structure results indicated that these individuals are distinct from the mainland Chinese A. cerana samples. Furthermore, population structure analyses have identified three genetically distinct geographic regions in Japan: Northern (Tohoku-Kanto-Chubu districts), Central (Chugoku district), and Southern (Kyushu district). In some districts, "possible non-native" individuals, likely introduced from other regions in recent years, were discovered. Then, genome-wide scans were conducted to detect candidate genes for adaptation by two different approaches. We performed a population branch statistics (PBS) analysis to identify candidate genes for population-specific divergence. A latent factor mixed model (LFMM) was used to identify genes associated with climatic variables along a geographic gradient. The PBSmax analysis identified 25 candidate genes for population-specific divergence whereas the LFMM analysis identified 73 candidate genes for adaptation to climatic variables along a geographic gradient. However, no common genes were identified by both methods.

2.
BMC Ecol Evol ; 22(1): 31, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296235

RESUMEN

BACKGROUND: The Japanese honeybee, Apis cerana japonica, shows a specific defensive behavior, known as a "hot defensive bee ball," used against the giant hornet, Vespa mandarinia. Hundreds of honeybee workers surround a hornet and make a "bee ball" during this behavior. They maintain the ball for around 30 min, and its core temperature can reach 46. Although various studies have been conducted on the characteristics of this behavior, its molecular mechanism has yet to be elucidated. Here, we performed a comprehensive transcriptomic analysis to detect candidate genes related to balling behavior. RESULTS: The expression levels of differentially expressed genes (DEGs) in the brain, flight muscle, and fat body were evaluated during ball formation and incubation at 46 °C. The DEGs detected during ball formation, but not in response to heat, were considered important for ball formation. The expression of genes related to rhodopsin signaling were increased in all tissues during ball formation. DEGs detected in one or two tissues during ball formation were also identified. CONCLUSIONS: Given that rhodopsin is involved in temperature sensing in Drosophila, the rhodopsin-related DEGs in A. cerana japonica may be involved in temperature sensing specifically during ball formation.


Asunto(s)
Rodopsina , Avispas , Animales , Abejas/genética , Perfilación de la Expresión Génica , Japón , Avispas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA