Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(25): 6335-6340, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29871946

RESUMEN

In the field of X-ray microcomputed tomography (µCT) there is a growing need to reduce acquisition times at high spatial resolution (approximate micrometers) to facilitate in vivo and high-throughput operations. The state of the art represented by synchrotron light sources is not practical for certain applications, and therefore the development of high-brightness laboratory-scale sources is crucial. We present here imaging of a fixed embryonic mouse sample using a compact laser-plasma-based X-ray light source and compare the results to images obtained using a commercial X-ray µCT scanner. The radiation is generated by the betatron motion of electrons inside a dilute and transient plasma, which circumvents the flux limitations imposed by the solid or liquid anodes used in conventional electron-impact X-ray tubes. This X-ray source is pulsed (duration <30 fs), bright (>1010 photons per pulse), small (diameter <1 µm), and has a critical energy >15 keV. Stable X-ray performance enabled tomographic imaging of equivalent quality to that of the µCT scanner, an important confirmation of the suitability of the laser-driven source for applications. The X-ray flux achievable with this approach scales with the laser repetition rate without compromising the source size, which will allow the recording of high-resolution µCT scans in minutes.


Asunto(s)
Radiografía/métodos , Microtomografía por Rayos X/métodos , Animales , Diseño de Equipo , Rayos Láser , Luz , Ratones/embriología , Aceleradores de Partículas , Fotones , Dispersión de Radiación , Rayos X
2.
Rev Sci Instrum ; 93(3): 033504, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35364989

RESUMEN

Laser wakefield acceleration (LWFA) using PW-class laser pulses generally requires cm-scale laser-plasma interaction Rayleigh length, which can be realized by focusing such pulses inside a long underdense plasma with a large f-number focusing optic. Here, we present a new PW-based LWFA instrument at the SG-II 5 PW laser facility, which employs f/23 focusing. The setup also adapted an online probing of the plasma density via Nomarski interferometry using a probe laser beam having 30 fs pulse duration. By focusing 1-PW, 30-fs laser pulses down to a focal spot of 230 µm, the peak laser intensity reached a mild-relativistic level of 2.6 × 1018 W/cm2, a level modest for standard LWFA experiments. Despite the large aspect ratio of >25:1 (transverse to longitudinal dimensions) of the laser pulse, electron beams were observed in our experiment only when the laser pulse experienced relativistic self-focusing at high gas-pressure thresholds, corresponding to plasma densities higher than 3 × 1018 cm-3.

3.
Phys Rev E ; 103(5-1): 053210, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34134310

RESUMEN

A hybrid mechanism of ion acceleration is investigated which demonstrates the higher spectral density of protons at high energies. The interaction of few-cycle terrawatt laser pulses with near-critical density gas target is studied with the help of two-dimensional particle-in-cell simulation. The generation of few MeV protons with high spectral concentration near cutoff is attributed to the propagation of solitary waves in the decaying density profile of the gas jet. Plasma dynamics at longer time scale is explained by semianalytical modeling and conditions for solitary wave breaking are presented.

4.
Sci Rep ; 10(1): 3108, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32080268

RESUMEN

Recent advances on laser technology have enabled the generation of ultrashort (fs) high power (PW) laser systems. For such large scale laser facilities there is an imperative demand for high repetition rate operation in symbiosis with beamlines or end-stations. In such extreme conditions the generation of electromagnetic pulses (EMP) during high intense laser target interaction experiments can tip the scale for the good outcome of the campaign. The EMP effects are several including interference with diagnostic devices and actuators as well as damage of electrical components. The EMP issue is quite known in the picosecond (ps) pulse laser experiments but no systematic study on EMP issues at multi-Joule fs-class lasers has been conducted thus far. In this paper we report the first experimental campaign for EMP-measurements performed at the 200 TW laser system (VEGA 2) at CLPU laser center. EMP pulse energy has been measured as a function of the laser intensity and energy together with other relevant quantities such as (i) the charge of the laser-driven protons and their maximum energy, as well as (ii) the X-ray Kα emission coming from electron interaction inside the target. Analysis of experimental results demonstrate (and confirm) a direct correlation between the measured EMP pulse energy and the laser parameters such as laser intensity and laser energy in the ultrashort pulse duration regime. Numerical FEM (Finite Element Method) simulations of the EMP generated by the target holder system have been performed and the simulations results are shown to be in good agreement with the experimental ones.

5.
Sci Rep ; 9(1): 13840, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554895

RESUMEN

Recent advances on laser-driven ion accelerators have sparked an increased interest in such energetic particle sources, particularly towards the viability of their usage in a breadth of applications, such as high energy physics and medical applications. Here, we identify a new ion acceleration mechanism and we demonstrate, via particle-in-cell simulations, for the first time the generation of high energy, monochromatic proton micro-bunches while witnessing the acceleration and self-modulation of the accelerated proton beam in a dual-gas target, consisting of mixed ion species. In the proposed ion acceleration mechanism due to the interaction of an ultra-short, ultra-intense (2 PW, 20 fs) laser pulses with near-critical-density partially ionized plasmas (C & H species), we numerically observed high energy monochromatic proton microbunches of high quality (peak proton energy 350 MeV, laser to proton conversion efficiency ~10-4 and angular divergence <10 degree), which can be of high relevance for medical applications. We envisage that through this scheme, the range of attained energies and the monochromaticity of the accelerated protons can be increased with existing laser facilities or allow for laser-driven ion acceleration investigations to be pursued at moderate energies in smaller scale laser laboratories, hence reducing the size of the accelerators. The use of mixed-gas targets will enable high repetition rate operation of these accelerators, free of plasma debris and electromagnetic pulse disruptions.

6.
Sci Adv ; 5(11): eaav7940, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31803828

RESUMEN

A typical laser-plasma accelerator (LPA) is driven by a single, ultrarelativistic laser pulse from terawatt- or petawatt-class lasers. Recently, there has been some theoretical work on the use of copropagating two-color laser pulses (CTLP) for LPA research. Here, we demonstrate the first LPA driven by CTLP where we observed substantial electron energy enhancements. Those results have been further confirmed in a practical application, where the electrons are used in a bremsstrahlung-based positron generation configuration, which led to a considerable boost in the positron energy as well. Numerical simulations suggest that the trailing second harmonic relativistic laser pulse is capable of sustaining the acceleration structure for much longer distances after the preceding fundamental pulse is depleted in the plasma. Therefore, our work confirms the merits of driving LPAs by two-color pulses and paves the way toward a downsizing of LPAs, making their potential applications in science and technology extremely attractive and affordable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA