Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 93(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30728266

RESUMEN

Memory B cells (MBCs) are key determinants of the B cell response to influenza virus infection and vaccination, but the effect of different forms of influenza antigen exposure on MBC populations has received little attention. We analyzed peripheral blood mononuclear cells and plasma collected following human H3N2 influenza infection to investigate the relationship between hemagglutinin-specific antibody production and changes in the size and character of hemagglutinin-reactive MBC populations. Infection produced increased concentrations of plasma IgG reactive to the H3 head of the infecting virus, to the conserved stalk, and to a broad chronological range of H3s consistent with original antigenic sin responses. H3-reactive IgG MBC expansion after infection included reactivity to head and stalk domains. Notably, expansion of H3 head-reactive MBC populations was particularly broad and reflected original antigenic sin patterns of IgG production. Findings also suggest that early-life H3N2 infection "imprints" for strong H3 stalk-specific MBC expansion. Despite the breadth of MBC expansion, the MBC response included an increase in affinity for the H3 head of the infecting virus. Overall, our findings indicate that H3-reactive MBC expansion following H3N2 infection is consistent with maintenance of response patterns established early in life, but nevertheless includes MBC adaptation to the infecting virus.IMPORTANCE Rapid and vigorous virus-specific antibody responses to influenza virus infection and vaccination result from activation of preexisting virus-specific memory B cells (MBCs). Understanding the effects of different forms of influenza virus exposure on MBC populations is therefore an important guide to the development of effective immunization strategies. We demonstrate that exposure to the influenza hemagglutinin via natural infection enhances broad protection through expansion of hemagglutinin-reactive MBC populations that recognize head and stalk regions of the molecule. Notably, we show that hemagglutinin-reactive MBC expansion reflects imprinting by early-life infection and that this might apply to stalk-reactive, as well as to head-reactive, MBCs. Our findings provide experimental support for the role of MBCs in maintaining imprinting effects and suggest a mechanism by which imprinting might confer heterosubtypic protection against avian influenza viruses. It will be important to compare our findings to the situation after influenza vaccination.


Asunto(s)
Linfocitos B/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Memoria Inmunológica , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Estaciones del Año , Anticuerpos Antivirales/inmunología , Humanos , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A
3.
Pathogens ; 11(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35215130

RESUMEN

Infection with the ß-coronavirus SARS-CoV-2 typically generates strong virus-specific antibody production. Antibody responses against novel features of SARS-CoV-2 proteins require naïve B cell activation, but there is a growing appreciation that conserved regions are recognized by pre-existing memory B cells (MBCs) generated by endemic coronaviruses. The current study investigated the role of pre-existing cross-reactive coronavirus memory in the antibody response to the viral spike (S) and nucleocapsid (N) proteins following SARS-CoV-2 infection. The breadth of reactivity of circulating antibodies, plasmablasts, and MBCs was analyzed. Acutely infected subjects generated strong IgG responses to the S protein, including the novel receptor binding domain, the conserved S2 region, and to the N protein. The response included reactivity to the S of endemic ß-coronaviruses and, interestingly, to the N of an endemic α-coronavirus. Both mild and severe infection expanded IgG MBC populations reactive to the S of SARS-CoV-2 and endemic ß-coronaviruses. Avidity of S-reactive IgG antibodies and MBCs increased after infection. Overall, findings indicate that the response to the S and N of SARS-CoV-2 involves pre-existing MBC activation and adaptation to novel features of the proteins, along with the potential of imprinting to shape the response to SARS-CoV-2 infection.

4.
mBio ; 12(1)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563823

RESUMEN

Whether mother-to-infant SARS-CoV-2 transmission can occur during breastfeeding and, if so, whether the benefits of breastfeeding outweigh this risk during maternal COVID-19 illness remain important questions. Using RT-qPCR, we did not detect SARS-CoV-2 RNA in any milk sample (n = 37) collected from 18 women following COVID-19 diagnosis. Although we detected evidence of viral RNA on 8 out of 70 breast skin swabs, only one was considered a conclusive positive result. In contrast, 76% of the milk samples collected from women with COVID-19 contained SARS-CoV-2-specific IgA, and 80% had SARS-CoV-2-specific IgG. In addition, 62% of the milk samples were able to neutralize SARS-CoV-2 infectivity in vitro, whereas milk samples collected prior to the COVID-19 pandemic were unable to do so. Taken together, our data do not support mother-to-infant transmission of SARS-CoV-2 via milk. Importantly, milk produced by infected mothers is a beneficial source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness.IMPORTANCE Results from prior studies assaying human milk for the presence of SARS-CoV-2, the causative virus of COVID-19, have suggested milk may act as a potential vehicle for mother-to-child transmission. Most previous studies are limited because they followed only a few participants, were cross-sectional, and/or failed to report how milk was collected and/or analyzed. As such, considerable uncertainty remains regarding whether human milk is capable of transmitting SARS-CoV-2 from mother to child. Here, we report that repeated milk samples collected from 18 women following COVID-19 diagnosis did not contain SARS-CoV-2 RNA; however, risk of transmission via breast skin should be further evaluated. Importantly, we found that milk produced by infected mothers is a source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness as milk likely provides specific immunologic benefits to infants.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , COVID-19/inmunología , Leche Humana/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , SARS-CoV-2/inmunología , Adulto , Mama/virología , Lactancia Materna , COVID-19/transmisión , COVID-19/virología , Femenino , Humanos , Lactante , Transmisión Vertical de Enfermedad Infecciosa , Masculino , Leche Humana/virología , Madres , Embarazo , Complicaciones Infecciosas del Embarazo/virología , ARN Viral/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación
5.
mBio ; 11(5)2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978311

RESUMEN

The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019 (COVID-19), reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and peripheral blood mononuclear cells (PBMCs) from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBC levels. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG, and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 were higher in convalescent subjects than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane.IMPORTANCE The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation.


Asunto(s)
Linfocitos B/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Inmunoglobulina G/inmunología , Neumonía Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anticuerpos Antivirales/inmunología , Linfocitos B/virología , COVID-19 , Convalecencia , Proteínas de la Nucleocápside de Coronavirus , Reacciones Cruzadas , Femenino , Voluntarios Sanos , Humanos , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , Pandemias , Fosfoproteínas , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
6.
medRxiv ; 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32995804

RESUMEN

Background: It is not known whether SARS-CoV-2 can be transmitted from mother to infant during breastfeeding, and if so whether the benefits of breastfeeding outweigh this risk. This study was designed to evaluate 1) if SARS-CoV-2 RNA can be detected in milk and on the breast of infected women, 2) concentrations of milk-borne anti-SARS-CoV-2 antibodies, and 3) the capacity of milk to neutralize SARS-CoV-2 infectivity. Methods: We collected 37 milk samples and 70 breast swabs (before and after breast washing) from 18 women recently diagnosed with COVID-19. Samples were analyzed for SARS-CoV-2 RNA using RT-qPCR. Milk was also analyzed for IgA and IgG specific for the nucleocapsid protein, receptor binding domain (RBD), S2 subunit of the spike protein of SARS-CoV-2, as well as 2 seasonal coronaviruses using ELISA; and for its ability to neutralize SARS-CoV-2. Results: We did not detect SARS-CoV-2 RNA in any milk sample. In contrast, SARS-CoV-2 RNA was detected on several breast swabs, although only one was considered conclusive. All milk contained SARS-CoV-2-specific IgA and IgG, and levels of anti-RBD IgA correlated with SARS-CoV-2 neutralization. Strong correlations between levels of IgA and IgG to SARS-CoV-2 and seasonal coronaviruses were noted. Conclusions: Our data do not support maternal-to-child transmission of SARS-CoV-2 via milk; however, risk of transmission via breast skin should be further evaluated. Importantly, milk produced by infected mothers is a source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA