Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Biol Chem ; 299(12): 105473, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979916

RESUMEN

Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.


Asunto(s)
Fosfatos de Fosfatidilinositol , Subunidades de Proteína , ATPasas de Translocación de Protón Vacuolares , Humanos , Sitios de Unión , Endosomas/enzimología , Endosomas/metabolismo , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Concentración de Iones de Hidrógeno , Lisosomas/enzimología , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Dominios Proteicos
2.
J Biol Chem ; 296: 100703, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33895134

RESUMEN

The vacuolar H+-ATPase (V-ATPase) is a highly conserved proton pump responsible for the acidification of intracellular organelles in virtually all eukaryotic cells. V-ATPases are regulated by the rapid and reversible disassembly of the peripheral V1 domain from the integral membrane Vo domain, accompanied by release of the V1 C subunit from both domains. Efficient reassembly of V-ATPases requires the Regulator of the H+-ATPase of Vacuoles and Endosomes (RAVE) complex in yeast. Although a number of pairwise interactions between RAVE and V-ATPase subunits have been mapped, the low endogenous levels of the RAVE complex and lethality of constitutive RAV1 overexpression have hindered biochemical characterization of the intact RAVE complex. We describe a novel inducible overexpression system that allows purification of native RAVE and RAVE-V1 complexes. Both purified RAVE and RAVE-V1 contain substoichiometric levels of subunit C. RAVE-V1 binds tightly to expressed subunit C in vitro, but binding of subunit C to RAVE alone is weak. Neither RAVE nor RAVE-V1 interacts with the N-terminal domain of Vo subunit Vph1 in vitro. RAVE-V1 complexes, like isolated V1, have no MgATPase activity, suggesting that RAVE cannot reverse V1 inhibition generated by rotation of subunit H and entrapment of MgADP that occur upon disassembly. However, purified RAVE can accelerate reassembly of V1 carrying a mutant subunit H incapable of inhibition with Vo complexes reconstituted into lipid nanodiscs, consistent with its catalytic activity in vivo. These results provide new insights into the possible order of events in V-ATPase reassembly and the roles of the RAVE complex in each event.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , ATPasas de Translocación de Protón Vacuolares/genética
3.
J Biol Chem ; 297(4): 101110, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428448

RESUMEN

Valproate (VPA) is a widely used mood stabilizer, but its therapeutic mechanism of action is not understood. This knowledge gap hinders the development of more effective drugs with fewer side effects. Using the yeast model to elucidate the effects of VPA on cellular metabolism, we determined that the drug upregulated expression of genes normally repressed during logarithmic growth on glucose medium and increased levels of activated (phosphorylated) Snf1 kinase, the major metabolic regulator of these genes. VPA also decreased the cytosolic pH (pHc) and reduced glycolytic production of 2/3-phosphoglycerate. ATP levels and mitochondrial membrane potential were increased, and glucose-mediated extracellular acidification decreased in the presence of the drug, as indicated by a smaller glucose-induced shift in pH, suggesting that the major P-type proton pump Pma1 was inhibited. Interestingly, decreasing the pHc by omeprazole-mediated inhibition of Pma1 led to Snf1 activation. We propose a model whereby VPA lowers the pHc causing a decrease in glycolytic flux. In response, Pma1 is inhibited and Snf1 is activated, resulting in increased expression of normally repressed metabolic genes. These findings suggest a central role for pHc in regulating the metabolic program of yeast cells.


Asunto(s)
Citosol/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Ácido Valproico/farmacología , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Glucólisis/efectos de los fármacos , Glucólisis/genética , Concentración de Iones de Hidrógeno , Proteínas Serina-Treonina Quinasas/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 295(8): 2259-2269, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31941791

RESUMEN

The yeast vacuolar H+-ATPase (V-ATPase) of budding yeast (Saccharomyces cerevisiae) is regulated by reversible disassembly. Disassembly inhibits V-ATPase activity under low-glucose conditions by releasing peripheral V1 subcomplexes from membrane-bound Vo subcomplexes. V-ATPase reassembly and reactivation requires intervention of the conserved regulator of H+-ATPase of vacuoles and endosomes (RAVE) complex, which binds to cytosolic V1 subcomplexes and assists reassembly with integral membrane Vo complexes. Consistent with its role, the RAVE complex itself is reversibly recruited to the vacuolar membrane by glucose, but the requirements for its recruitment are not understood. We demonstrate here that RAVE recruitment to the membrane does not require an interaction with V1 Glucose-dependent RAVE localization to the vacuolar membrane required only intact Vo complexes containing the Vph1 subunit, suggesting that the RAVE-Vo interaction is glucose-dependent. We identified a short conserved sequence in the center of the RAVE subunit Rav1 that is essential for the interaction with Vph1 in vivo and in vitro Mutations in this region resulted in the temperature- and pH-dependent growth phenotype characteristic of ravΔ mutants. However, this region did not account for glucose sensitivity of the Rav1-Vph1 interaction. We quantitated glucose-dependent localization of a GFP-tagged RAVE subunit to the vacuolar membrane in several mutants previously implicated in altering V-ATPase assembly state or glucose-induced assembly. RAVE localization did not correlate with V-ATPase assembly levels reported previously in these mutants, highlighting both the catalytic nature of RAVE's role in V-ATPase assembly and the likelihood of glucose signaling to RAVE independently of V1.


Asunto(s)
Glucosa/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Membranas Intracelulares/metabolismo , Mutación/genética , Unión Proteica , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Vacuolas/metabolismo
5.
Traffic ; 19(6): 385-390, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29473670

RESUMEN

Tom Stevens' lab has explored the subunit composition and assembly of the yeast V-ATPase for more than 30 years. Early studies helped establish yeast as the predominant model system for study of V-ATPase proton pumps and led to the discovery of protein splicing of the V-ATPase catalytic subunit. The Vma- phenotype, characteristic of loss-of-V-ATPase activity in yeast was key in determining the enzyme's subunit composition via yeast genetics. V-ATPase subunit composition proved to be highly conserved among eukaryotes. Genetic screens for new vma mutants led to identification of a set of dedicated V-ATPase assembly factors and helped unravel the complex pathways for V-ATPase assembly. In later years, exploration of the evolutionary history of several V-ATPase subunits provided new information about the enzyme's structure and function. This review highlights V-ATPase work in the Stevens' lab between 1987 and 2017.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Animales , Proteínas Fúngicas/metabolismo , Humanos , Mutación/fisiología , Fenotipo , Subunidades de Proteína/metabolismo , Levaduras/metabolismo
6.
J Biol Chem ; 294(23): 9161-9171, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31023825

RESUMEN

The low-level endo-lysosomal signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), is required for full assembly and activity of vacuolar H+-ATPases (V-ATPases) containing the vacuolar a-subunit isoform Vph1 in yeast. The cytosolic N-terminal domain of Vph1 is also recruited to membranes in vivo in a PI(3,5)P2-dependent manner, but it is not known if its interaction with PI(3,5)P2 is direct. Here, using biochemical characterization of isolated yeast vacuolar vesicles, we demonstrate that addition of exogenous short-chain PI(3,5)P2 to Vph1-containing vacuolar vesicles activates V-ATPase activity and proton pumping. Modeling of the cytosolic N-terminal domain of Vph1 identified two membrane-oriented sequences that contain clustered basic amino acids. Substitutions in one of these sequences (231KTREYKHK) abolished the PI(3,5)P2-dependent activation of V-ATPase without affecting basal V-ATPase activity. We also observed that vph1 mutants lacking PI(3,5)P2 activation have enlarged vacuoles relative to those in WT cells. These mutants exhibit a significant synthetic growth defect when combined with deletion of Hog1, a kinase important for signaling the transcriptional response to osmotic stress. The results suggest that PI(3,5)P2 interacts directly with Vph1, and that this interaction both activates V-ATPase activity and protects cells from stress.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Mutagénesis , Presión Osmótica , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/química , Vacuolas/metabolismo
7.
Kidney Int ; 97(3): 567-579, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31959358

RESUMEN

Distal renal tubular acidosis is a rare renal tubular disorder characterized by hyperchloremic metabolic acidosis and impaired urinary acidification. Mutations in three genes (ATP6V0A4, ATP6V1B1 and SLC4A1) constitute a monogenic causation in 58-70% of familial cases of distal renal tubular acidosis. Recently, mutations in FOXI1 have been identified as an additional cause. Therefore, we hypothesized that further monogenic causes of distal renal tubular acidosis remain to be discovered. Panel sequencing and/or whole exome sequencing was performed in a cohort of 17 families with 19 affected individuals with pediatric onset distal renal tubular acidosis. A causative mutation was detected in one of the three "classical" known distal renal tubular acidosis genes in 10 of 17 families. The seven unsolved families were then subjected to candidate whole exome sequencing analysis. Potential disease causing mutations in three genes were detected: ATP6V1C2, which encodes another kidney specific subunit of the V-type proton ATPase (1 family); WDR72 (2 families), previously implicated in V-ATPase trafficking in cells; and SLC4A2 (1 family), a paralog of the known distal renal tubular acidosis gene SLC4A1. Two of these mutations were assessed for deleteriousness through functional studies. Yeast growth assays for ATP6V1C2 revealed loss-of-function for the patient mutation, strongly supporting ATP6V1C2 as a novel distal renal tubular acidosis gene. Thus, we provided a molecular diagnosis in a known distal renal tubular acidosis gene in 10 of 17 families (59%) with this disease, identified mutations in ATP6V1C2 as a novel human candidate gene, and provided further evidence for phenotypic expansion in WDR72 mutations from amelogenesis imperfecta to distal renal tubular acidosis.


Asunto(s)
Acidosis Tubular Renal , ATPasas de Translocación de Protón Vacuolares , Acidosis Tubular Renal/genética , Proteína 1 de Intercambio de Anión de Eritrocito , Niño , Antiportadores de Cloruro-Bicarbonato , Análisis Mutacional de ADN , Factores de Transcripción Forkhead , Humanos , Mutación , ATPasas de Translocación de Protón Vacuolares/genética , Secuenciación del Exoma
8.
EMBO J ; 35(15): 1694-706, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27295975

RESUMEN

Vacuolar ATPases (V-ATPases) are essential proton pumps that acidify the lumen of subcellular organelles in all eukaryotic cells and the extracellular space in some tissues. V-ATPase activity is regulated by a unique mechanism referred to as reversible disassembly, wherein the soluble catalytic sector, V1, is released from the membrane and its MgATPase activity silenced. The crystal structure of yeast V1 presented here shows that activity silencing involves a large conformational change of subunit H, with its C-terminal domain rotating ~150° from a position near the membrane in holo V-ATPase to a position at the bottom of V1 near an open catalytic site. Together with biochemical data, the structure supports a mechanistic model wherein subunit H inhibits ATPase activity by stabilizing an open catalytic site that results in tight binding of inhibitory ADP at another site.


Asunto(s)
Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/química , Adenosina Difosfato/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
9.
J Biol Chem ; 290(46): 27511-23, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26405040

RESUMEN

The RAVE complex (regulator of the H(+)-ATPase of vacuolar and endosomal membranes) is required for biosynthetic assembly and glucose-stimulated reassembly of the yeast vacuolar H(+)-ATPase (V-ATPase). Yeast RAVE contains three subunits: Rav1, Rav2, and Skp1. Rav1 is the largest subunit, and it binds Rav2 and Skp1 of RAVE; the E, G, and C subunits of the V-ATPase peripheral V1 sector; and Vph1 of the membrane Vo sector. We identified Rav1 regions required for interaction with its binding partners through deletion analysis, co-immunoprecipitation, two-hybrid assay, and pulldown assays with expressed proteins. We find that Skp1 binding requires sequences near the C terminus of Rav1, V1 subunits E and C bind to a conserved region in the C-terminal half of Rav1, and the cytosolic domain of Vph1 binds near the junction of the Rav1 N- and C-terminal halves. In contrast, Rav2 binds to the N-terminal domain of Rav1, which can be modeled as a double ß-propeller. Only the V1 C subunit binds to both Rav1 and Rav2. Using GFP-tagged RAVE subunits in vivo, we demonstrate glucose-dependent association of RAVE with the vacuolar membrane, consistent with its role in glucose-dependent V-ATPase assembly. It is known that V1 subunit C localizes to the V1-Vo interface in assembled V-ATPase complexes and is important in regulated disassembly of V-ATPases. We propose that RAVE cycles between cytosol and vacuolar membrane in a glucose-dependent manner, positioning V1 and V0 subcomplexes and orienting the V1 C subunit to promote assembly.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Sitios de Unión , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Técnicas del Sistema de Dos Híbridos , ATPasas de Translocación de Protón Vacuolares/química
10.
J Biol Chem ; 290(46): 27460-72, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26324718

RESUMEN

Depletion of inositol has profound effects on cell function and has been implicated in the therapeutic effects of drugs used to treat epilepsy and bipolar disorder. We have previously shown that the anticonvulsant drug valproate (VPA) depletes inositol by inhibiting myo-inositol-3-phosphate synthase, the enzyme that catalyzes the first and rate-limiting step of inositol biosynthesis. To elucidate the cellular consequences of inositol depletion, we screened the yeast deletion collection for VPA-sensitive mutants and identified mutants in vacuolar sorting and the vacuolar ATPase (V-ATPase). Inositol depletion caused by starvation of ino1Δ cells perturbed the vacuolar structure and decreased V-ATPase activity and proton pumping in isolated vacuolar vesicles. VPA compromised the dynamics of phosphatidylinositol 3,5-bisphosphate (PI3,5P2) and greatly reduced V-ATPase proton transport in inositol-deprived wild-type cells. Osmotic stress, known to increase PI3,5P2 levels, did not restore PI3,5P2 homeostasis nor did it induce vacuolar fragmentation in VPA-treated cells, suggesting that perturbation of the V-ATPase is a consequence of altered PI3,5P2 homeostasis under inositol-limiting conditions. This study is the first to demonstrate that inositol depletion caused by starvation of an inositol synthesis mutant or by the inositol-depleting drug VPA leads to perturbation of the V-ATPase.


Asunto(s)
Anticonvulsivantes/farmacología , Inositol/deficiencia , Liasas Intramoleculares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/enzimología , Ácido Valproico/farmacología , Farmacorresistencia Fúngica/genética , Eliminación de Gen , Homeostasis , Inositol/genética , Mio-Inositol-1-Fosfato Sintasa/genética , Presión Osmótica , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , ATPasas de Translocación de Protón Vacuolares/genética
11.
Adv Exp Med Biol ; 892: 33-68, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26721270

RESUMEN

Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.


Asunto(s)
Membrana Celular/metabolismo , ATPasas de Translocación de Protón/metabolismo , Protones , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/metabolismo , Membrana Celular/química , Expresión Génica , Concentración de Iones de Hidrógeno , Transporte Iónico , Modelos Moleculares , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Especificidad de la Especie , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/química
12.
J Biol Chem ; 289(46): 32316-32326, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25271159

RESUMEN

Yeast mutants lacking the intracellular V-ATPase proton pump (vma mutants) have reduced levels of the Pma1p proton pump at the plasma membrane and increased levels in organelles including the vacuolar lumen. We examined the mechanism and physiological consequences of Pma1p mislocalization. Pma1p is ubiquitinated in vma mutants, and ubiquitination depends on the ubiquitin ligase Rsp5p and the arrestin-related adaptor protein Rim8p. vma mutant strains containing rsp5 or rim8 mutations maintain Pma1p at the plasma membrane, suggesting that ubiquitination is required for Pma1p internalization. Acute inhibition of V-ATPase activity with concanamycin A triggers Pma1p ubiquitination and internalization. In an endocytosis-deficient mutant (end4Δ) Pma1p is ubiquitinated but retained at the plasma membrane during concanamycin A treatment. Consistent with specificity in signaling loss of V-ATPase activity to Pma1p, another plasma membrane transporter, Mup1p, is not internalized in a vma mutant, and loss of the Mup1p adaptor Art1p does not prevent Pma1p internalization in a vma mutant. Very poor growth of vma2 rsp5-1 and vma2 rim8Δ double mutants suggests that Pma1p internalization benefits the vma mutants. We hypothesize that loss of V-ATPase-mediated organelle acidification signals ubiquitination, internalization, and degradation of a portion of Pma1p as a means of balancing overall pH homeostasis.


Asunto(s)
Membrana Celular/enzimología , ATPasas de Translocación de Protón/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas de Ciclo Celular , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Concentración de Iones de Hidrógeno , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transporte Iónico , Macrólidos/química , Microscopía Fluorescente , Mutación , Oligonucleótidos/química , ATPasas de Translocación de Protón/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Vacuolas/metabolismo
13.
J Biol Chem ; 288(16): 11366-77, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23457300

RESUMEN

Vacuolar H(+)-ATPases (V-ATPases) acidify intracellular organelles and help to regulate overall cellular pH. Yeast vma mutants lack V-ATPase activity and allow exploration of connections between cellular pH, iron, and redox homeostasis common to all eukaryotes. A previous microarray study in a vma mutant demonstrated up-regulation of multiple iron uptake genes under control of Aft1p (the iron regulon) and only one antioxidant gene, the peroxiredoxin TSA2 (Milgrom, E., Diab, H., Middleton, F., and Kane, P. M. (2007) Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J. Biol. Chem. 282, 7125-7136). Fluorescent biosensors placing GFP under transcriptional control of either an Aft1-dependent promoter (P(FIT2)-GFP) or the TSA2 promoter (P(TSA2)-GFP) were constructed to monitor transcriptional signaling. Both biosensors were up-regulated in the vma2Δ mutant, and acute V-ATPase inhibition with concanamycin A induced coordinate up-regulation from both promoters. PTSA2-GFP induction was Yap1p-dependent, indicating an oxidative stress signal. Total cell iron measurements indicate that the vma2Δ mutant is iron-replete, despite up-regulation of the iron regulon. Acetic acid up-regulated P(FIT2)-GFP expression in wild-type cells, suggesting that loss of pH control contributes to an iron deficiency signal in the mutant. Iron supplementation significantly decreased P(FIT2)-GFP expression and, surprisingly, restored P(TSA2)-GFP to wild-type levels. A tsa2Δ mutation induced both nuclear localization of Aft1p and P(FIT2)-GFP expression. The data suggest a novel function for Tsa2p as a negative regulator of Aft1p-driven transcription, which is induced in V-ATPase mutants to limit transcription of the iron regulon. This represents a new mechanism bridging the antioxidant and iron-regulatory pathways that is intimately linked to pH homeostasis.


Asunto(s)
Hierro/metabolismo , Peroxidasas/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transducción de Señal/fisiología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/fisiología , Homeostasis/fisiología , Concentración de Iones de Hidrógeno , Estrés Oxidativo/fisiología , Peroxidasas/genética , Peroxirredoxinas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , ATPasas de Translocación de Protón Vacuolares/genética
14.
Eukaryot Cell ; 11(4): 442-51, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22327006

RESUMEN

In the budding yeast Saccharomyces cerevisiae, the Cdc42 effector Ste20 plays a crucial role in the regulation of filamentous growth, a response to nutrient limitation. Using the split-ubiquitin technique, we found that Ste20 forms a complex with Vma13, an important regulatory subunit of vacuolar H(+)-ATPase (V-ATPase). This protein-protein interaction was confirmed by a pulldown assay and coimmunoprecipitation. We also demonstrate that Ste20 associates with vacuolar membranes and that Ste20 stimulates V-ATPase activity in isolated vacuolar membranes. This activation requires Ste20 kinase activity and does not depend on increased assembly of the V1 and V0 sectors of the V-ATPase, which is a major regulatory mechanism. Furthermore, loss of V-ATPase activity leads to a strong increase in invasive growth, possibly because these cells fail to store and mobilize nutrients efficiently in the vacuole in the absence of the vacuolar proton gradient. In contrast to the wild type, which grows in rather small, isolated colonies on solid medium during filamentation, hyperinvasive vma mutants form much bigger aggregates in which a large number of cells are tightly clustered together. Genetic data suggest that Ste20 and the protein kinase A catalytic subunit Tpk2 are both activated in the vma13Δ strain. We propose that during filamentous growth, Ste20 stimulates V-ATPase activity. This would sustain nutrient mobilization from vacuolar stores, which is beneficial for filamentous growth.


Asunto(s)
Quinasas Quinasa Quinasa PAM/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Activación Enzimática , Eliminación de Gen , Hifa/enzimología , Hifa/genética , Hifa/crecimiento & desarrollo , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/enzimología , Vacuolas/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
15.
Eukaryot Cell ; 11(3): 282-91, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22210831

RESUMEN

Hyperosmotic stress activates an array of cellular detoxification mechanisms, including the high-osmolarity glycerol (HOG) pathway. We report here that vacuolar H(+)-ATPase (V-ATPase) activity helps provide osmotic tolerance in Saccharomyces cerevisiae. V-ATPase subunit genes exhibit complex haploinsufficiency interactions with HOG pathway components. vma mutants lacking V-ATPase function are sensitive to high concentrations of salt and exhibit Hog1p activation even at low salt concentrations, as demonstrated by phosphorylation of Hog1p, a shift in Hog1-green fluorescent protein localization, transcriptional activation of a subset of HOG pathway effectors, and transcriptional inhibition of parallel mitogen-activated protein kinase pathway targets. vma2Δ hog1Δ and vma3Δ pbs2Δ double mutants have a synthetic growth phenotype, poor salt tolerance, and an aberrant, hyper-elongated morphology on solid media, accompanied by activation of a filamentous response element-LacZ construct, indicating cross talk into the filamentous growth pathway. Vacuoles isolated from wild-type cells briefly exposed to salt show higher levels of V-ATPase activity, and Na(+)/H(+) exchange in isolated vacuolar vesicles suggests a biochemical basis for the genetic interactions observed. V-ATPase activity is upregulated during salt stress by increasing assembly of the catalytic V(1) sector with the membrane-bound V(o) sector. Together, these data suggest that the V-ATPase acts in parallel with the HOG pathway in order to mediate salt detoxification.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Transducción de Señal/fisiología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adaptación Fisiológica , Genes Reporteros , Glicerol/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Concentración Osmolar , Presión Osmótica , Fosforilación , Proteínas de Saccharomyces cerevisiae/genética , Tolerancia a la Sal/genética , Transcripción Genética , ATPasas de Translocación de Protón Vacuolares/genética
16.
Front Mol Biosci ; 10: 1168680, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37398550

RESUMEN

Vacuolar H+-ATPases (V-ATPases) acidify several organelles in all eukaryotic cells and export protons across the plasma membrane in a subset of cell types. V-ATPases are multisubunit enzymes consisting of a peripheral subcomplex, V1, that is exposed to the cytosol and an integral membrane subcomplex, Vo, that contains the proton pore. The Vo a-subunit is the largest membrane subunit and consists of two domains. The N-terminal domain of the a-subunit (aNT) interacts with several V1 and Vo subunits and serves to bridge the V1 and Vo subcomplexes, while the C-terminal domain contains eight transmembrane helices, two of which are directly involved in proton transport. Although there can be multiple isoforms of several V-ATPase subunits, the a-subunit is encoded by the largest number of isoforms in most organisms. For example, the human genome encodes four a-subunit isoforms that exhibit a tissue- and organelle-specific distribution. In the yeast S. cerevisiae, the two a-subunit isoforms, Golgi-enriched Stv1 and vacuolar Vph1, are the only V-ATPase subunit isoforms. Current structural information indicates that a-subunit isoforms adopt a similar backbone structure but sequence variations allow for specific interactions during trafficking and in response to cellular signals. V-ATPases are subject to several types of environmental regulation that serve to tune their activity to their cellular location and environmental demands. The position of the aNT domain in the complex makes it an ideal target for modulating V1-Vo interactions and regulating enzyme activity. The yeast a-subunit isoforms have served as a paradigm for dissecting interactions of regulatory inputs with subunit isoforms. Importantly, structures of yeast V-ATPases containing each a-subunit isoform are available. Chimeric a-subunits combining elements of Stv1NT and Vph1NT have provided insights into how regulatory inputs can be integrated to allow V-ATPases to support cell growth under different stress conditions. Although the function and distribution of the four mammalian a-subunit isoforms present additional complexity, it is clear that the aNT domains of these isoforms are also subject to multiple regulatory interactions. Regulatory mechanisms that target mammalian a-subunit isoforms, and specifically the aNT domains, will be described. Altered V-ATPase function is associated with multiple diseases in humans. The possibility of regulating V-ATPase subpopulations via their isoform-specific regulatory interactions are discussed.

17.
Mol Biol Cell ; 34(3): ar14, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36598799

RESUMEN

V-ATPases are highly regulated proton pumps that acidify organelles. The V-ATPase a-subunit is a two-domain protein containing a C-terminal transmembrane domain responsible for proton transport and an N-terminal cytosolic domain (aNT) that is a regulatory hub, integrating environmental inputs to regulate assembly, localization, and V-ATPase activity. The yeast Saccharomyces cerevisiae encodes only two organelle-specific a-isoforms, Stv1 in the Golgi and Vph1 in the vacuole. On the basis of recent structures, we designed chimeric yeast aNTs in which the globular proximal and distal ends are exchanged. The Vph1 proximal-Stv1 distal (VPSD) aNT chimera binds to the glucose-responsive RAVE assembly factor in vitro but exhibits little binding to PI(3,5)P2. The Stv1 proximal-Vph1 distal (SPVD) aNT lacks RAVE binding but binds more tightly to phosphoinositides than Vph1 or Stv1. When attached to the Vph1 C-terminal domain in vivo, both chimeras complement growth defects of a vph1∆ mutant, but only the SPVD chimera exhibits wild-type V-ATPase activity. Cells containing the SPVD chimera adapt more slowly to a poor carbon source than wild-type cells but grow more rapidly than wild-type cells after a shift to alkaline pH. This is the first example of a "redesigned" V-ATPase with altered regulatory properties and adaptation to specific stresses.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , ATPasas de Translocación de Protón Vacuolares , Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
18.
bioRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162989

RESUMEN

V-ATPases are highly conserved multi-subunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue and organelle specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms. We hypothesize that the aNT domains of the human isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. Bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP binding sites, potential binding sites in the HuaNT domains were identified by sequence comparisons and existing subunit structures and models. Mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data also suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.

19.
J Biol Chem ; 286(32): 28089-96, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21669878

RESUMEN

In yeast cells, subunit a of the vacuolar proton pump (V-ATPase) is encoded by two organelle-specific isoforms, VPH1 and STV1. V-ATPases containing Vph1 and Stv1 localize predominantly to the vacuole and the Golgi apparatus/endosomes, respectively. Ratiometric measurements of vacuolar pH confirm that loss of STV1 has little effect on vacuolar pH. Loss of VPH1 results in vacuolar alkalinization that is even more rapid and pronounced than in vma mutants, which lack all V-ATPase activity. Cytosolic pH responses to glucose addition in the vph1Δ mutant are similar to those in vma mutants. The extended cytosolic acidification in these mutants arises from reduced activity of the plasma membrane proton pump, Pma1p. Pma1p is mislocalized in vma mutants but remains at the plasma membrane in both vph1Δ and stv1Δ mutants, suggesting multiple mechanisms for limiting Pma1 activity when organelle acidification is compromised. pH measurements in early prevacuolar compartments via a pHluorin fusion to the Golgi protein Gef1 demonstrate that pH responses of these compartments parallel cytosolic pH changes. Surprisingly, these compartments remain acidic even in the absence of V-ATPase function, possibly as a result of cytosolic acidification. These results emphasize that loss of a single subunit isoform may have effects far beyond the organelle where it resides.


Asunto(s)
Dominio Catalítico/fisiología , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/enzimología , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Citosol/enzimología , Glucosa/farmacología , Aparato de Golgi/enzimología , Aparato de Golgi/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Edulcorantes/farmacología , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/genética
20.
Transl Res ; 247: 39-57, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35452875

RESUMEN

Fungal infection threatens human health worldwide due to the limited arsenal of antifungals and the rapid emergence of resistance. Epidermal growth factor receptor (EGFR) is demonstrated to mediate epithelial cell endocytosis of the leading human fungal pathogen, Candida albicans. However, whether EGFR inhibitors act on fungal cells remains unknown. Here, we discovered that the specific EGFR inhibitor osimertinib mesylate (OSI) potentiates azole efficacy against diverse fungal pathogens and overcomes azole resistance. Mechanistic investigation revealed a conserved activity of OSI by promoting intracellular fluconazole accumulation via inhibiting Pdr5 and disrupting V-ATPase function via targeting Vma1 at serine 274, eventually leading to inactivation of the global regulator TOR. Evaluation of the in vivo efficacy and toxicity of OSI demonstrated its potential clinical application in impeding fluconazole resistance. Thus, the identification of OSI as a dual action antifungal with co-targeting activity proposes a potentially effective therapeutic strategy to treat life-threatening fungal infection and overcome antifungal resistance.


Asunto(s)
Azoles , Micosis , Antifúngicos/farmacología , Azoles/farmacología , Azoles/uso terapéutico , Receptores ErbB , Fluconazol/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico , Micosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA