Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 22(11): 100661, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806341

RESUMEN

The postsynaptic density (PSD) of excitatory synapses contains a highly organized protein network with thousands of proteins and is a key node in the regulation of synaptic plasticity. To gain new mechanistic insight into experience-induced changes in the PSD, we examined the global dynamics of the hippocampal PSD proteome and phosphoproteome in mice following four different types of experience. Mice were trained using an inhibitory avoidance (IA) task and hippocampal PSD fractions were isolated from individual mice to investigate molecular mechanisms underlying experience-dependent remodeling of synapses. We developed a new strategy to identify and quantify the relatively low level of site-specific phosphorylation of PSD proteome from the hippocampus, by using a modified iTRAQ-based TiSH protocol. In the PSD, we identified 3938 proteins and 2761 phosphoproteins in the sequential strategy covering a total of 4968 unique protein groups (at least two peptides including a unique peptide). On the phosphoproteins, we identified a total of 6188 unambiguous phosphosites (75%

Asunto(s)
Proteínas de la Membrana , Proteoma , Ratones , Animales , Proteoma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Hipocampo/metabolismo , Sinapsis/metabolismo , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo
2.
Nano Lett ; 24(23): 7025-7032, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38832667

RESUMEN

Three-dimensional gold and its alloyed nanoporous structures possess high surface areas and strong local electric fields, rendering them ideal substrates for plasmonic molecular detection. Despite enhancing plasmonic properties and altering molecular interactions, the effect of alloy composition on molecular detection capability has not yet been explored. Here, we report molecular interactions between nanoporous gold alloys and charged molecules by controlling the alloy composition. We demonstrate enhanced adsorption of negatively charged molecules onto the alloy surface due to positively charged gold atoms and a shifted d-band center through charge transfer between gold and other metals. Despite similar EM field intensities, nanoporous gold with silver (Au/Ag) achieves SERS enhancement factors (EF) up to 6 orders of magnitude higher than those of other alloys for negatively charged molecules. Finally, nanoporous Au/Ag detects amyloid-beta at concentrations as low as approximately 1 fM, with SERS EF up to 10 orders of magnitude higher than that of a monolayer of Au nanoparticles.

3.
Nano Lett ; 22(24): 9861-9868, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36484527

RESUMEN

Plasmonic nanocavities have been used as a novel platform for studying strong light-matter coupling, opening access to quantum chemistry, material science, and enhanced sensing. However, the biomolecular study of cavity quantum electrodynamics (QED) is lacking. Here, we report the quantum electrodynamic behavior of chlorophyll-a in a plasmonic nanocavity. We construct an extreme plasmonic nanocavity using Au nanocages with various linker molecules and Au mirrors to obtain a strong coupling regime. Plasmon resonance energy transfer (PRET)-based hyperspectral imaging is applied to study the electrodynamic behaviors of chlorophyll-a in the nanocavity. Furthermore, we observe the energy level splitting of chlorophyll-a, similar to the cavity QED effects due to the light-matter interactions in the cavity. Our study will provide insight for further studies in quantum biological electron or energy transfer, electrodynamics, the electron transport chain of mitochondria, and energy harvesting, sensing, and conversion in both biological and biophysical systems.


Asunto(s)
Clorofila , Electrones , Biofisica , Transferencia de Energía , Mitocondrias
4.
Nano Lett ; 22(19): 7927-7935, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36137175

RESUMEN

Electron transfer through the mitochondrial electron transport chain (ETC) can be critically blocked by the dysfunction of protein complexes. Redox-active molecules have been used to mediate the electron transfer in place of the dysfunctional complexes; however, they are limited to replacing complex I and are known to be toxic. Here we report artificial mitochondrial electron transfer pathways that enhance ETC activity by exploiting inner-membrane-bound gold nanoparticles (GNPs) as efficient electron transfer mediators. The hybridization of mitochondria with GNPs, driven by electrostatic interaction, is successfully visualized in real time at the level of a single mitochondrion. By observing quantized quenching dips via plasmon resonance energy transfer, we reveal that the hybridized GNPs are bound to the inner membrane of mitochondria irrespective of the presence of the outer membrane. The ETC activity of mitochondria with GNPs such as membrane potential, oxygen consumption, and ATP production is remarkably increased in vitro.


Asunto(s)
Oro , Nanopartículas del Metal , Adenosina Trifosfato , Transporte de Electrón , Electrones
5.
Small ; 18(24): e2201075, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35570749

RESUMEN

The assembly of metal nanoparticles and targets to be detected in a small light probe volume is essential for achieving sensitive in-solution surface-enhanced Raman spectroscopy (SERS). Such assemblies generally require either chemical linkers or templates to overcome the random diffusion of the colloids unless the aqueous sample is dried. Here, a facile method is reported to produce 3D multiscale assemblies of various colloids ranging from molecules and nanoparticles to microparticles for sensitive in-solution SERS detection without chemical linkers and templates by exploiting photothermally driven convective flow. The simulations suggest that colloids sub 100 nm in diameter can be assembled by photothermally driven convective flow regardless of density; the assembly of larger colloids up to several micrometers by convective flow is significant only if their density is close to that of water. Consistent with the simulation results, the authors confirm that the photothermally driven convective flow is mainly responsible for the observed coassembly of plasmonic gold nanorods with either smaller molecules or larger microparticles. It is further found that the coassembly with the plasmonic nanoantennae leads to dramatic Raman enhancements of molecules, microplastics, and microbes by up to fivefold of magnitude compared to those measured in solution without the coassembly.


Asunto(s)
Nanopartículas del Metal , Plásticos , Coloides/química , Oro/química , Nanopartículas del Metal/química , Espectrometría Raman/métodos
6.
J Immunol ; 205(12): 3372-3382, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33188072

RESUMEN

Persistent infection with gammaherpesviruses (γHV) can cause lymphomagenesis in immunocompromised patients. Murine γHV-68 (MHV-68) is an important tool for understanding immune factors contributing to γHV control; however, modeling control of γHV-associated lymphomagenesis has been challenging. Current model systems require very long incubation times or severe immune suppression, and tumor penetrance is low. In this report, we describe the generation of a B cell lymphoma on the C57BL/6 background, which is driven by the Myc oncogene and expresses an immunodominant CD8 T cell epitope from MHV-68. We determined MHV-68-specific CD8 T cells in latently infected mice use either IFN-γ or perforin/granzyme to control γHV-associated lymphoma, but perforin/granzyme is a more potent effector mechanism for lymphoma control than IFN-γ. Consistent with previous reports, CD4-depleted mice lost control of virus replication in persistently infected mice. However, control of lymphoma remained intact in the absence of CD4 T cells. Collectively, these data show the mechanisms of T cell control of B cell lymphoma in γHV-infected mice overlap with those necessary for control of virus replication, but there are also important differences. This study establishes a tool for further dissecting immune surveillance against, and optimizing adoptive T cell therapies for, γHV-associated lymphomas.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Memoria Inmunológica , Linfoma de Células B/inmunología , Virus de la Hepatitis Murina/inmunología , Proteínas de Neoplasias/inmunología , Animales , Epítopos de Linfocito T/genética , Femenino , Linfoma de Células B/genética , Linfoma de Células B/patología , Ratones , Ratones Transgénicos , Virus de la Hepatitis Murina/genética , Proteínas de Neoplasias/genética
7.
Mol Cell Proteomics ; 19(6): 971-993, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32265294

RESUMEN

The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic ß-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, ß-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic ß-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, ß-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the ß-cell's adaptive flexibility and indicates that therapeutic approaches applied to encourage ß-cell rest are capable of restoring endogenous ß-cell function. However, mechanisms that regulate ß-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying ß-cell adaptive flexibility in db/db ß-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with ß-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking-core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of ß-cell function, providing improved insight into disease pathogenesis of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Hiperglucemia/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Proinsulina/biosíntesis , Proteoma/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Modelos Animales de Enfermedad , Adhesiones Focales , Ontología de Genes , Glucosa/metabolismo , Hiperglucemia/genética , Secreción de Insulina , Células Secretoras de Insulina/patología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proinsulina/metabolismo , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteoma/genética , Proteómica , Sistema Renina-Angiotensina , Ácidos Siálicos/metabolismo , Espectrometría de Masas en Tándem , Ubiquitinación
8.
J Korean Med Sci ; 37(13): e68, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35380023

RESUMEN

BACKGROUND: Denosumab (DEN) and zoledronic acid (ZOL) currently represent the most potent antiresorptive agents for the treatment of osteoporosis. Despite similar effects on bone resorption, these agents have distinct mechanisms of action. The objective of this study was to compare the effect of DEN and ZOL after two-year administration on bone mineral density (BMD), trabecular bone score (TBS), bone turnover markers, and persistence. METHODS: A total of 585 postmenopausal women with osteoporosis who did not use osteoporosis medications were retrospectively reviewed. 290 patients were administered 60 mg DEN subcutaneously every 6 months from 2017 to 2018, and 295 patients were treated with 5 mg ZOL intravenously yearly from 2015 to 2017. BMD, TBS, and C-terminal cross-linking telopeptide of type 1 collagen (CTX) measurements were obtained at baseline and two-year after DEN injection or ZOL infusion. RESULTS: After two-year follow-up, 188 patients in the DEN group and 183 patients in the ZOL group were compared. BMD change from baseline at two years was significantly greater in the DEN group compared with the ZOL group (P < 0.001). The changes of TBS in the DEN group were statistically significant compared with baseline (P < 0.001) and the ZOL group (P < 0.001). The DEN group led to significantly greater reduction of CTX compared with ZOL group (P = 0.041). CONCLUSION: In postmenopausal women with osteoporosis, DEN was associated with greater BMD increase at all measured skeletal sites, greater increase of TBS, and greater inhibition of bone remodeling compared with ZOL.


Asunto(s)
Denosumab , Osteoporosis , Densidad Ósea , Hueso Esponjoso , Denosumab/farmacología , Denosumab/uso terapéutico , Femenino , Humanos , Osteoporosis/tratamiento farmacológico , Posmenopausia/fisiología , Estudios Retrospectivos , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/uso terapéutico
9.
Nano Lett ; 21(14): 6194-6201, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34254801

RESUMEN

Plasmonic nanocavities between metal nanoparticles on metal films are either hydrophobic or fully occupied by nonmetallic spacers, preventing molecular diffusion into electromagnetic hotspots. Here we realize water-wettable open plasmonic cavities by devising gold nanoparticle with site-selectively grown ultrathin dielectric layer-on-gold film structures. We directly confirm that hydrophilic dielectric layers of SiO2 or TiO2, which are formed only at the tips of gold nanorod via precise temperature control, render sub-10 nm cavities open to the surroundings and completely water-wettable. Simulations reveal that spontaneous wetting in our cavities is driven by the presence of tip-selective hydrophilic layer and tendency of minimizing high energy air/water interface inside the cavities. Our plasmonic cavities show significant Raman enhancement of up to 4 orders of magnitude higher than those of conventional ones for molecules in various media. Our findings will offer new opportunities for sensing applications of plasmonic nanocavities and have huge impacts on cavity plasmonics.


Asunto(s)
Oro , Nanopartículas del Metal , Interacciones Hidrofóbicas e Hidrofílicas , Dióxido de Silicio , Agua
10.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563402

RESUMEN

Renal fibrosis is an irreversible and progressive process that causes severe dysfunction in chronic kidney disease (CKD). The progression of CKD stages is highly associated with a gradual reduction in serum Klotho levels. We focused on Klotho protein as a key therapeutic factor against CKD. Urine-derived stem cells (UDSCs) have been identified as a novel stem cell source for kidney regeneration and CKD treatment because of their kidney tissue-specific origin. However, the relationship between UDSCs and Klotho in the kidneys is not yet known. In this study, we discovered that UDSCs were stem cells that expressed Klotho protein more strongly than other mesenchymal stem cells (MSCs). UDSCs also suppressed fibrosis by inhibiting transforming growth factor (TGF)-ß in HK-2 human renal proximal tubule cells in an in vitro model. Klotho siRNA silencing reduced the TGF-inhibiting ability of UDSCs. Here, we suggest an alternative cell source that can overcome the limitations of MSCs through the synergetic effect of the origin specificity of UDSCs and the anti-fibrotic effect of Klotho.


Asunto(s)
Riñón , Proteínas Klotho , Insuficiencia Renal Crónica , Células Madre , Femenino , Fibrosis , Glucuronidasa/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Masculino , Regeneración , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Orina
11.
Anal Chem ; 93(28): 9927-9932, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34236175

RESUMEN

Dynamics of release and cellular uptake of aqueous CO from CO-releasing molecules (CORMs) significantly affect signaling and cell viability. So far, it has been mainly observed by IR, UV-visible, and fluorescence techniques, which suffer from poor sensitivity and slow response time. Here, we show how to directly probe the mass transfer of aqueous CO from CORMs to cells using a fluidic chamber integrated with live cells and Raman reporters of large-area Au@Pd core-shell nanoparticle assembly to emulate a physiologically relevant microenvironment. We sensitively and directly detect CO release from trace CORMs of as low as 100 nM by measuring the Raman transitions of CO via rapid chemisorption onto the surface of the Au@Pd nanoparticles. By using our method, we successfully observe the dynamics of CO release from CORM-2 despite its very short half-life. We also reveal that the initial rate of CO release from CORM-3 is dramatically decreased by tens to hundreds of times when exposed to physiologically relevant pH variations from 7.4 to 2.5, which can be attributed to the acid hydrolysis of the CO ligand. CORM-2 tends to quickly release CO regardless of pH, probably because of its rapid cleavage into two monomeric Ru complexes by the co-solvent. The decrease in the initial rate at lower temperatures is more significant for CORM-3 than for CORM-2. Finally, we observe that the cellular uptake of aqueous CO from CORM-3 by lung cancer cells is approximately 2 times higher than that of normal lung cells.


Asunto(s)
Monóxido de Carbono , Compuestos Organometálicos , Transporte Biológico , Supervivencia Celular , Humanos , Agua
12.
BMC Musculoskelet Disord ; 22(1): 1056, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930222

RESUMEN

BACKGROUND: Recent studies on biportal endoscopic spine surgery in patients with lumbar spinal stenosis have reported good clinical results. However, these studies have been limited by the small sample sizes and use of a retrospective study design. Therefore, we aim to compare the efficacy and safety of biportal endoscopic decompressive laminectomy with those of conventional decompressive laminectomy in a multicenter, prospective, randomized controlled trial. METHODS: This study will include 120 patients (60 per group, aged 20-80 years) with 1- or 2-level lumbar spinal stenosis, who will be recruited from six hospitals. The study will be conducted from July 2021 to December 2024. The primary outcome (Oswestry Disability Index at 12 months after surgery) will be evaluated through a modified intention-to-treat method. The secondary outcomes will include the following: visual analog scale score for low back and lower extremity radiating pain, EuroQol 5-dimensions score, surgery satisfaction, walking time, postoperative return to daily life period, postoperative surgical scars, and some surgery-related variables. Radiographic outcomes will be analyzed using magnetic resonance imaging or computed tomography. All outcomes will be evaluated before the surgery and at 2 weeks, 3 months, 6 months, and 12 months postoperatively. This protocol adheres to the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) guidelines for reporting of clinical trial protocols. DISCUSSION: It is hypothesized that the efficacy and safety of biportal endoscopic and conventional decompressive laminectomy will be comparable in patients with lumbar spinal stenosis. The results of this trial will provide a high level of evidence for the efficacy and safety of the biportal endoscopic technique in patients with lumbar spinal stenosis and facilitate the development of clinical practice guidelines. Furthermore, the results of this study may indicate the feasibility of the biportal endoscopic technique for other types of spinal surgery. TRIAL REGISTRATION: The ENDO-B trial is registered at Clinical Research Information Service (CRIS, cris.nih.go.kr ) (KCT0006057; April 52,021).


Asunto(s)
Estenosis Espinal , Humanos , Laminectomía/efectos adversos , Estudios Multicéntricos como Asunto , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Retrospectivos , Estenosis Espinal/diagnóstico por imagen , Estenosis Espinal/cirugía , Caminata
13.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360779

RESUMEN

Pro-inflammatory cytokines promote cellular iron-import through enhanced divalent metal transporter-1 (DMT1) expression in pancreatic ß-cells, consequently cell death. Inhibition of ß-cell iron-import by DMT1 silencing protects against apoptosis in animal models of diabetes. However, how alterations of signaling networks contribute to the protective action of DMT1 knock-down is unknown. Here, we performed phosphoproteomics using our sequential enrichment strategy of mRNA, protein, and phosphopeptides, which enabled us to explore the concurrent molecular events in the same set of wildtype and DMT1-silenced ß-cells during IL-1ß exposure. Our findings reveal new phosphosites in the IL-1ß-induced proteins that are clearly reverted by DMT1 silencing towards their steady-state levels. We validated the levels of five novel phosphosites of the potential protective proteins using parallel reaction monitoring. We also confirmed the inactivation of autophagic flux that may be relevant for cell survival induced by DMT1 silencing during IL-1ß exposure. Additionally, the potential protective proteins induced by DMT1 silencing were related to insulin secretion that may lead to improving ß-cell functions upon exposure to IL-1ß. This global profiling has shed light on the signal transduction pathways driving the protection against inflammation-induced cell death in ß-cells after DMT1 silencing.


Asunto(s)
Apoptosis/inmunología , Autofagia/inmunología , Proteínas de Transporte de Catión/deficiencia , Técnicas de Silenciamiento del Gen , Células Secretoras de Insulina/inmunología , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Transducción de Señal/inmunología , Animales , Apoptosis/genética , Autofagia/genética , Proteínas de Transporte de Catión/inmunología , Interleucina-1beta/genética , Interleucina-6/genética , Ratones , Transducción de Señal/genética
14.
Mol Cell Proteomics ; 17(1): 95-110, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29113996

RESUMEN

Normal pancreatic islet ß-cells (PBCs) abundantly secrete insulin in response to elevated blood glucose levels, in order to maintain an adequate control of energy balance and glucose homeostasis. However, the molecular mechanisms underlying the insulin secretion are unclear. Improving our understanding of glucose-stimulated insulin secretion (GSIS) mechanisms under normal conditions is a prerequisite for developing better interventions against diabetes. Here, we aimed at identifying novel signaling pathways involved in the initial release of insulin from PBCs after glucose stimulation using quantitative strategies for the assessment of phosphorylated proteins and sialylated N-linked (SA) glycoproteins.Islets of Langerhans derived from newborn rats with a subsequent 9-10 days of maturation in vitro were stimulated with 20 mm glucose for 0 min (control), 5 min, 10 min, and 15 min. The isolated islets were subjected to time-resolved quantitative phosphoproteomics and sialiomics using iTRAQ-labeling combined with enrichment of phosphorylated peptides and formerly SA glycopeptides and high-accuracy LC-MS/MS. Using bioinformatics we analyzed the functional signaling pathways during GSIS, including well-known insulin secretion pathways. Furthermore, we identified six novel activated signaling pathways (e.g. agrin interactions and prolactin signaling) at 15 min GSIS, which may increase our understanding of the molecular mechanism underlying GSIS. Moreover, we validated some of the regulated phosphosites by parallel reaction monitoring, which resulted in the validation of eleven new phosphosites significantly regulated on GSIS. Besides protein phosphorylation, alteration in SA glycosylation was observed on several surface proteins on brief GSIS. Interestingly, proteins important for cell-cell interaction, cell movement, cell-ECM interaction and Focal Adhesion (e.g. integrins, semaphorins, and plexins) were found regulated at the level of sialylation, but not in protein expression. Collectively, we believe that this comprehensive Proteomics and PTMomics survey of signaling pathways taking place during brief GSIS of primary PBCs is contributing to understanding the complex signaling underlying GSIS.


Asunto(s)
Glucosa/farmacología , Secreción de Insulina/fisiología , Células Secretoras de Insulina/efectos de los fármacos , Animales , Animales Recién Nacidos , Células Secretoras de Insulina/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica , Ratas Wistar , Transducción de Señal
15.
Nano Lett ; 19(3): 2074-2083, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30785755

RESUMEN

Century-old Langmuir monolayer deposition still represents the most convenient approach to the production of monolayers of colloidal nanoparticles on solid substrates for practical biological and chemical-sensing applications. However, this approach simply yields arbitrarily shaped large monolayers on a flat surface and is strongly limited by substrate topography and interfacial energy. Here, we describe a generalized and facile method of rapidly producing uniform monolayers of various colloidal nanoparticles on arbitrary solid substrates by using an ordinary capillary tube. Our method is based on an interesting finding of inversion phenomenon of a nanoparticle-laden air-water interface by flowing through a capillary tube in a manner that prevents the particles from adhesion to the capillary sidewall, thereby presenting the nanoparticles face-first at the tube's opposite end for direct and one-step deposition onto a substrate. We show that our method not only allows the placement of a nanoparticle monolayer at target locations of solid substrates regardless of their surface geometry and adhesion but also enables the production of monolayers containing nanoparticles with different size, shape, surface charge, and composition. To explore the potential of our approach, we demonstrate the facile integration of gold nanoparticle monolayers into microfluidic devices for the real-time monitoring of molecular Raman signals under dynamic flow conditions. Moreover, we successfully extend the use of our method to developing on-demand Raman sensors that can be built directly on the surface of consumer products for practical chemical sensing and fingerprinting. Specifically, we achieve both the pinpoint deposition of gold nanoparticle monolayers and sensitive molecular detection from the deposited region on clothing fabric for the detection of illegal drug substances, a single grain of rice and an orange for pesticide monitoring, and a $100 bill as a potential anti-counterfeit measure, respectively. We believe that our method will provide unique opportunities to expand the utility of colloidal nanoparticles and to greatly improve the accessibility of nanoparticle-based sensing technologies.

16.
Nano Lett ; 19(10): 7449-7456, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31478378

RESUMEN

The surface hydrophobicity of a microbial cell is known to be one of the important factors in its adhesion to an interface. To date, such property has been altered by either genetic modification or external pH, temperature, and nutrient control. Here we report a new strategy to engineer a microbial cell surface and discover the unique dynamic trapping of hydrophilic cells at an air/water interface via hydrophobicity switching. We demonstrate the surface transformation and hydrophobicity switching of Escherichia coli (E. coli) by metal nanoparticles. By employing real-time dark-field imaging, we directly observe that hydrophobic gold nanoparticle-coated E. coli, unlike its naked counterpart, is irreversibly trapped at the air/water interface because of elevated hydrophobicity. We show that our surface transformation method and resulting dynamic interfacial trapping can be generally extended to Gram-positive bateria, Gram-negative bacteria, and fungi. As the dynamic interfacial trapping allows the preconcentration of microbial cells, high intensity of scattering light, in-plane focusing, and near-field enhancement, we are able to directly quantify E. coli as low as 1.0 × 103 cells/ml by using a smartphone with an image analyzer. We also establish the identification of different microbial cells by the characteristic Raman transitions directly measured from the interfacially trapped cells.


Asunto(s)
Recuento de Células/métodos , Escherichia coli/aislamiento & purificación , Oro/química , Nanopartículas del Metal/química , Saccharomyces cerevisiae/citología , Infecciones por Escherichia coli/microbiología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Imagen Óptica/métodos , Espectrometría Raman/métodos , Propiedades de Superficie
17.
J Proteome Res ; 18(9): 3245-3258, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31317746

RESUMEN

For the treatment of patients with prediabetes or diabetes, clinical evidence has emerged that ß-cell function can be restored by glucose-lowering therapeutic strategies. However, little is known about the molecular mechanisms underlying this functional adaptive behavior of the pancreatic ß-cell. This study examines the dynamic changes in protein expression and phosphorylation state associated with (pro)insulin production and secretory pathway function mediated by euglycemia to induce ß-cell rest in obese/diabetic db/db islet ß-cells. Unbiased quantitative profiling of the protein expression and phosphorylation events that occur upon ß-cell adaption during the transition from hyperglycemia to euglycemia was assessed in isolated pancreatic islets from obese diabetic db/db and wild-type (WT) mice using quantitative proteomics and phosphoproteomics together with bioinformatics analysis. Dynamic changes in the expression and phosphorylation of proteins associated with pancreatic ß-cell (pro)insulin production and complementary regulated-secretory pathway regulation were observed in obese diabetic db/db islets in a hyperglycemic environment, relative to WT mouse islets in a normal euglycemic environment, that resolved when isolated db/db islets were exposed to euglycemia for 12 h in vitro. By similarly treating WT islets in parallel, the effects of tissue culture could be mostly eliminated and only those changes associated with resolution by euglycemia were assessed. Among such regulated protein phosphorylation-dependent signaling events were those associated with COPII-coated vesicle-dependent ER exit, ER-to-Golgi trafficking, clathrin-coat disassembly, and a particular association for the luminal Golgi protein kinase, FAM20C, in control of distal secretory pathway trafficking, sorting, and granule biogenesis. Protein expression and especially phosphorylation play key roles in the regulation of (pro)insulin production, correlative secretory pathway trafficking, and the restoration of ß-cell secretory capacity in the adaptive functional ß-cell response to metabolic demand, especially that mediated by glucose.


Asunto(s)
Proteínas de Unión al Calcio/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Proteínas de la Matriz Extracelular/genética , Estado Prediabético/tratamiento farmacológico , Proteómica , Animales , Glucemia/efectos de los fármacos , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Diabetes Mellitus Tipo 2/sangre , Modelos Animales de Enfermedad , Glucosa/metabolismo , Aparato de Golgi/efectos de los fármacos , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/genética , Insulina/biosíntesis , Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Obesidad/tratamiento farmacológico , Obesidad/genética , Estado Prediabético/sangre , Transporte de Proteínas/efectos de los fármacos
18.
Anal Chem ; 91(20): 13152-13157, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31525290

RESUMEN

Detection of small metabolites is essential for monitoring and optimizing biological gas conversion. Currently, such detection is typically done by liquid chromatography with offline sampling. However, this method often requires large equipment with multiple separation columns and is at risk of serious microbial contamination during sampling. Here we propose real-time optical detection of small metabolites using uniform plasmonic nanoparticles monolayers produced by capillary-assisted transfer. We reproducibly fabricate metal nanoparticles monolayers with a diameter of ∼1 mm for the detection of acetate, butyrate, and glucose by a glass capillary tube. Metal nanoparticles monolayers are not only uniform in terms of average interparticle distance but also structurally stable under dynamic fluidic conditions. The monolayers resistant to fluid shear stress with surface-enhanced Raman scattering are able to reversibly monitor the concentration of acetate and sensitively detect acetate and glucose at levels as low as 10 µM, which is more than 2 orders of magnitude lower than the concentration range of typical biological gas conversion. In addition, structurally similar metabolites such as acetate and butyrate, when mixed, become distinguishable by our method.


Asunto(s)
Ácido Acético/análisis , Butiratos/análisis , Glucosa/análisis , Nanopartículas del Metal/química , Oro/química , Límite de Detección , Nanosferas/química , Nanotubos/química , Prueba de Estudio Conceptual , Plata/química , Espectrometría Raman
19.
J Proteome Res ; 17(4): 1664-1676, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29518335

RESUMEN

Characterization of molecular mechanisms underlying pancreatic ß-cell function in relation to glucose-stimulated insulin secretion is incomplete, especially with respect to global response in the nuclear environment. We focus on the characterization of proteins in the nuclear environment of ß-cells after brief, high glucose stimulation. We compared purified nuclei derived from ß-cells stimulated with 17 mM glucose for 0, 2, and 5 min using quantitative proteomics, a time frame that most likely does not result in translation of new protein in the cell. Among the differentially regulated proteins, we identified 20 components of the nuclear organization processes, including nuclear pore organization, ribonucleoprotein complex, and pre-mRNA transcription. We found alteration of the nuclear pore complex, together with calcium/calmodulin-binding chaperones that facilitate protein and RNA import or export to/from the nucleus to the cytoplasm. Putative insulin mRNA transcription-associated factors were identified among the regulated proteins, and they were cross-validated by Western blotting and confocal immunofluorescence imaging. Collectively, our data suggest that protein translocation between the nucleus and the cytoplasm is an important process, highly involved in the initial molecular mechanism underlying glucose-stimulated insulin secretion in pancreatic ß-cells.


Asunto(s)
Núcleo Celular/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Proteínas Nucleares/análisis , Transporte de Proteínas/efectos de los fármacos , Células Cultivadas , Citoplasma/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Espectrometría de Masas , Proteínas Nucleares/efectos de los fármacos , Proteómica , Factores de Tiempo
20.
Small ; 14(45): e1803055, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30294867

RESUMEN

Controlled assembly of colloidal nanoparticles onto solid substrates generally needs to overcome their thermal diffusion in water. For this purpose, several techniques that are based on chemical bonding, capillary interactions with substrate patterning, optical force, and optofluidic heating of light-absorbing substrates are proposed. However, the direct assembly of colloidal nanoparticles on generic substrates without chemical linkers and substrate patterning still remains challenging. Here, photothermal convection lithography is proposed, which allows the rapid placement of colloidal nanoparticles onto the surface of diverse solid substrates. It is based on local photothermal heating of colloidal nanoparticles by resonant light focusing without substrate heating, which induces convective flow. The convective flow, then, forces the colloidal nanoparticles to assemble at the illumination point of light. The size of the assembly is increased by either increasing the light intensity or illumination time. It is shown that three types of colloidal gold nanoparticles with different shapes (rod, star, and sphere) can be uniformly assembled by the proposed method. Each assembly with a diameter of tens of micrometers can be completed within a minute and its patterned arrays can also be achieved rapidly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA