Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Genet ; 19(5): e1010566, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37126510

RESUMEN

Transposable elements constitute nearly half of the mammalian genome and play important roles in genome evolution. While a multitude of both transcriptional and post-transcriptional mechanisms exist to silence transposable elements, control of transposition in vivo remains poorly understood. MOV10, an RNA helicase, is an inhibitor of mobilization of retrotransposons and retroviruses in cell culture assays. Here we report that MOV10 restricts LINE1 retrotransposition in mice. Although MOV10 is broadly expressed, its loss causes only incomplete penetrance of embryonic lethality, and the surviving MOV10-deficient mice are healthy and fertile. Biochemically, MOV10 forms a complex with UPF1, a key component of the nonsense-mediated mRNA decay pathway, and primarily binds to the 3' UTR of somatically expressed transcripts in testis. Consequently, loss of MOV10 results in an altered transcriptome in testis. Analyses using a LINE1 reporter transgene reveal that loss of MOV10 leads to increased LINE1 retrotransposition in somatic and reproductive tissues from both embryos and adult mice. Moreover, the degree of LINE1 retrotransposition inhibition is dependent on the Mov10 gene dosage. Furthermore, MOV10 deficiency reduces reproductive fitness over successive generations. Our findings demonstrate that MOV10 attenuates LINE1 retrotransposition in a dosage-dependent manner in mice.


Asunto(s)
Elementos Transponibles de ADN , ARN Helicasas , Animales , Masculino , Ratones , Degradación de ARNm Mediada por Codón sin Sentido , Retroelementos/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo
2.
Nucleic Acids Res ; 49(9): 5106-5123, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33939832

RESUMEN

The transition from meiotic spermatocytes to postmeiotic haploid germ cells constitutes an essential step in spermatogenesis. The epigenomic regulatory mechanisms underlying this transition remain unclear. Here, we find a prominent transcriptomic switch from the late spermatocytes to the early round spermatids during the meiotic-to-postmeiotic transition, which is associated with robust histone acetylation changes across the genome. Among histone deacetylases (HDACs) and acetyltransferases, we find that HDAC3 is selectively expressed in the late meiotic and early haploid stages. Three independent mouse lines with the testis-specific knockout of HDAC3 show infertility and defects in meiotic exit with an arrest at the late stage of meiosis or early stage of round spermatids. Stage-specific RNA-seq and histone acetylation ChIP-seq analyses reveal that HDAC3 represses meiotic/spermatogonial genes and activates postmeiotic haploid gene programs during meiotic exit, with associated histone acetylation alterations. Unexpectedly, abolishing HDAC3 catalytic activity by missense mutations in the nuclear receptor corepressor (NCOR or SMRT) does not cause infertility, despite causing histone hyperacetylation as HDAC3 knockout, demonstrating that HDAC3 enzyme activity is not required for spermatogenesis. Motif analysis of the HDAC3 cistrome in the testes identified SOX30, which has a similar spatiotemporal expression pattern as HDAC3 during spermatogenesis. Depletion of SOX30 in the testes abolishes the genomic recruitment of the HDAC3 to the binding sites. Collectively, these results establish the SOX30/HDAC3 signaling as a key regulator of the transcriptional program in a deacetylase-independent manner during the meiotic-to-postmeiotic transition in spermatogenesis.


Asunto(s)
Fertilidad/genética , Regulación de la Expresión Génica , Histona Desacetilasas/fisiología , Meiosis/genética , Espermatogénesis/genética , Activación Transcripcional , Acetilación , Animales , Reprogramación Celular/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción SOX/metabolismo , Espermátides/citología , Espermátides/metabolismo , Testículo/metabolismo
3.
Ecotoxicol Environ Saf ; 190: 110063, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31846860

RESUMEN

Arsenic is a toxic metalloid that can cause male reproductive malfunctions and is widely distributed in the environment. The aim of this study was to investigate the cytotoxicity of arsenic trioxide (ATO) induced GC-1 spermatogonial (spg) cells. Our results found that ATO increased the levels of catalase (CAT) and malonaldehyde (MDA) and reactive oxygen species (ROS), while decreasing glutathione (GSH) and the total antioxidant capacity (T-AOC). Therefore, ATO triggered oxidative stress in GC-1 spg cells. In addition, ATO also caused severe mitochondrial dysfunction that included an increase in residual oxygen consumption (ROX), and decreased the routine respiration, maximal and ATP-linked respiration (ATP-L-R), as well as spare respiratory capacity (SRC), and respiratory control rate (RCR); ATO also damaged the mitochondrial structure, including mitochondrial cristae disordered and dissolved, mitochondrial vacuolar degeneration. Moreover, degradation of p62, LC3 conversion, increasing the number of acidic vesicle organelles (AVOs) and autophagosomes and autolysosomes are demonstrated that the cytotoxicity of ATO may be associated with autophagy. Meanwhile, the metabolomics analysis results showed that 20 metabolites (10 increased and 10 decreased) were significantly altered with the ATO exposure, suggesting that maybe there are the perturbations in amino acid metabolism, lipid metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins. We concluded that ATO was toxic to GC-1 spg cells via inducing oxidative stress, mitochondrial dysfunction and autophagy as well as the disruption of normal metabolism. This study will aid our understanding of the mechanisms behind ATO-induced spermatogenic toxicity.


Asunto(s)
Trióxido de Arsénico/toxicidad , Autofagia/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Glutatión/metabolismo , Lisosomas/metabolismo , Masculino , Metabolómica , Ratones , Mitocondrias/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Espermatogonias/enzimología , Espermatogonias/metabolismo
4.
Avian Pathol ; 48(5): 429-436, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31084377

RESUMEN

Ascites syndrome (AS) in chickens is associated with profound vascular remodelling and increased pulmonary artery pressure as well as right ventricular hypertrophy. Classical transient receptor potential cation channels (TRPCs) are key regulators of cardiac hypertrophy that act via regulation of calcium influx in mammals. We investigated whether classical transient receptor potential channels in chickens with right ventricular hypertrophy still possess this mechanism for regulating Ca2+ flux. Intravenous injection of cellulose particles was successfully used to induce AS in chickens, and tissues were examined 22 days after treatment. The chickens in the test group showed cardiac hypertrophy with oedema of the cardiac muscle and disruption of myofilaments. The right-to-total ventricle weight ratio (RV/TV), the levels of serum aspartate aminotransferase (AST) and creatine kinase (CK) of the test group were significantly higher than in the control group. Intracellular calcium levels were significantly increased in cardiomyocytes from chickens in the test group. Gene expression of TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 in heart tissues from the test group showed no significant differences compared with controls. However, TRPC1 protein levels, as well as mRNA levels, were down-regulated in the heart muscle of AS chickens (P < 0.05). Although we observed an increase in calcium concentration, the expression of TRPC1 decreased in cardiac cells. We hypothesized that an increase in intracellular free calcium concentration could inversely regulate calcium channel expression. RESEARCH HIGHLIGHTS Intracellular Ca2+ levels were increased in the myocardium of AS broilers. Expression of TRPC1, which mediates calcium influx, was decreased in the myocardium of AS broilers. The relationship between intracellular Ca2+ levels and expression of TRPC1 requires further study.


Asunto(s)
Ascitis/veterinaria , Canales de Calcio/metabolismo , Calcio/metabolismo , Pollos/fisiología , Animales , Ascitis/patología , Femenino , Regulación de la Expresión Génica , Masculino , Miocardio/patología , Miocitos Cardíacos/patología , ARN Mensajero/genética , Canales Catiónicos TRPC/genética
5.
J Trace Elem Med Biol ; 65: 126721, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33508548

RESUMEN

BACKGROUND: Excess copper (Cu) is an oxidative stress factor which associates with a variety of diseases. The aim of this study was to evaluate the effect of Cu in primary chicken embryo hepatocytes (CEHs). METHODS: CEHs were isolated from 13 days old chicken embryos and followed by different concentration Cu (0, 10, 100, 200 µM) and/or ALC treatment (0.3 mg/mL) for 12 or 24 h. The effects of Cu exposure in CEHs were determined by detecting reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP), and ATP levels. The expression of mitochondrial dynamics-related genes and proteins were also detected. RESULTS: Results showed that Cu treatment (100 or 200 µM) significantly decreased CEHs viability, MMP and ATP levels, increased ROS and MDA levels in 12 or 24 h. The up-regulated mitochondrial fission genes and protein in 100 and 200 µM Cu groups suggested Cu promoted mitochondrial division but not fusion. However, the co-treatment of ALC and Cu alleviated those changes compared with the 100 or 200 µM Cu groups. CONCLUSION: In conclusion, we speculated that Cu increased the oxidative stress and induced mitochondria dysfunction via disturbing mitochondrial dynamic balance in CEHs, and this process was not completely reversible.


Asunto(s)
Sulfato de Cobre/farmacología , Hepatocitos/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Pollos , Relación Dosis-Respuesta a Droga , Hepatocitos/metabolismo , Malondialdehído/análisis , Malondialdehído/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo
6.
Biomed Res Int ; 2021: 8871328, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33532499

RESUMEN

Acetyl-L-carnitine (ALC) is an effective substrate for mitochondrial energy metabolism and is known to prevent neurodegeneration and attenuate heavy metal-induced injury. In this study, we investigated the function of ALC in the recovery of mouse spermatogonia cells (GC-1 cells) after heat stress (HS). The cells were randomly divided into three groups: control group, HS group (incubated at 42°C for 90 min), and HS + ALC group (treatment of 150 µM ALC after incubated at 42°C for 90 min). After heat stress, all of the cells were recovered at 37°C for 6 h. In this study, the content of intracellular lactate dehydrogenase (LDH) in the cell supernatant and the malondialdehyde (MDA) levels, catalase (CAT) levels, and total antioxidant capacity (T-AOC) were significantly increased in the HS group compared to the CON group. In addition, the mitochondrial membrane potential (MMP) was markedly decreased, while the apoptosis rate and the expression of apoptosis-related genes (Bcl-2, Bax, and caspase3) were significantly increased in the HS group compared to the CON group. Furthermore, the number of autophagosomes and the expression of autophagy-related genes (Atg5, Beclin1, and LC3II) and protein levels of p62 were increased, but the expression of LAMP1 was decreased in the HS group compared to the CON group. However, treatment with ALC remarkably improved cell survival and decreased cell oxidative stress. It was unexpected that levels of autophagy were markedly increased in the HS + ALC group compared to the HS group. Taken together, our present study evidenced that ALC could alleviate oxidative stress and improve the level of autophagy to accelerate the recovery of GC-1 cells after heat stress.


Asunto(s)
Acetilcarnitina/farmacología , Autofagia/efectos de los fármacos , Respuesta al Choque Térmico/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Masculino , Malondialdehído/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Espermatogonias/citología
7.
Cell Biosci ; 11(1): 213, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34920761

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) have been the focus of ongoing research in a diversity of cellular processes. LncRNAs are abundant in mammalian testis, but their biological function remains poorly known. RESULTS: Here, we established an antisense oligonucleotides (ASOs)-based targeting approach that can efficiently knock down lncRNA in living mouse testis. We cloned the full-length transcript of lncRNA Tsx (testis-specific X-linked) and defined its testicular localization pattern. Microinjection of ASOs through seminiferous tubules in vivo significantly lowered the Tsx levels in both nucleus and cytoplasm. This effect lasted no less than 10 days, conducive to the generation and maintenance of phenotype. Importantly, ASOs performed better in depleting the nuclear Tsx and sustained longer effect than small interfering RNAs (siRNAs). In addition to the observation of an elevated number of apoptotic germ cells upon ASOs injection, which recapitulates the documented description of Tsx knockout, we also found a specific loss of meiotic spermatocytes despite overall no impact on meiosis and male fertility. CONCLUSIONS: Our study detailed the characterization of Tsx and illustrates ASOs as an advantageous tool to functionally interrogate lncRNAs in spermatogenesis.

8.
Biol Trace Elem Res ; 195(2): 472-480, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31444770

RESUMEN

Chronic copper exposure impaired spermatogenesis in adult male mice. The aim of this study was to determine whether chronic copper exposure can induce apoptosis of testicular cell and hypospermatogenesis via disturbing testosterone synthesis in adult male mice. In the present study, sixty CD-1 male mice were randomly divided into four groups, and were continuously administered for 8 weeks by oral gavage with copper sulfate at a dose of 0, 25, 100, and 150 mg/kg/day, respectively. We determined the content of serum and testicular copper, testicular coefficient, testicular histopathology, sperm count and motility, the mRNA and protein levels of Caspase-3, Bax, and Bcl-2, Leydig cell count, testosterone content, testosterone synthetase, and testosterone synthesis-related genes. The results showed that the copper levels in serum increased in a dose-dependent manner, and the copper levels in testes were significantly related to serum copper levels. Male mice given copper sulfate 100 and 150 dosage groups showed significant decreased in sperm motility and sperm number as well as increased in testes damage, and there was no significant change in testicular coefficient in the four groups. The mRNA levels of Bcl-2 decreased and Caspase-3 increased in 150 dosage group, and Bax increased in two higher dosage groups. Meanwhile, Caspase-3 and Bax proteins increased in 150 dosage group, and Bcl-2 protein decreased in three copper treatment groups. Nevertheless, there were no differences on the levels of testosterone content and testosterone synthetase of 3ß-HSD, 17ß-HSD, 17α-Hyd, and 20α-Hyd, mRNA levels of Cyp11a1, Cyp17a1, and Star, and quantity of Leydig cells in four groups. Overall, these data showed that chronic copper exposure led to copper residues in the testes, and the doses of 100 and 150 mg/kg/day copper sulfate may induce hypospermatogenesis by increasing apoptosis without affecting testosterone secretion.


Asunto(s)
Apoptosis/efectos de los fármacos , Sulfato de Cobre/farmacología , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos , Testosterona/metabolismo , Administración Oral , Animales , Sulfato de Cobre/administración & dosificación , Sulfato de Cobre/análisis , Masculino , Ratones , Testículo/metabolismo , Testículo/patología , Testosterona/sangre
9.
Toxicol In Vitro ; 61: 104639, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31491480

RESUMEN

Excess copper reduces sperm number and motility but the causes are unclear. We investigated the toxic effects of copper exposure on the immortalized male germ cell line GC-1. Copper addition to cells altered viability and morphology in a dose-dependent manner. Copper addition resulted in increased levels of reactive oxygen species (ROS), malonaldehyde (MDA) and lactate dehydrogenase (LDH) while catalase (CAT) activity and glutathione (GSH) declined. The mitochondrial transmembrane potential and ATP levels decreased in response to copper as did mitochondria fission that led to mitochondrial dysfunction. The apoptosis rate was also proportional to the level of copper in the growth medium. Copper also down-regulated Bcl2 and up-regulated Bax, Casp8 and Casp3 linking the effects of copper to increased apoptosis. The levels of mRNA for the autophagy-related genes (Atg3, Atg5, p62, Lc3b/Lc3a) and proteins (Lc3b/Lc3a, BECN1, Atg5, p62) all increased in copper-treated cells as were levels Lc3 determined by fluorescence microscopy. These results indicated that copper induces apoptosis and autophagy through oxidative stress-mediated mitochondrial dysfunction.


Asunto(s)
Apoptosis/efectos de los fármacos , Cobre/toxicidad , Células Germinativas/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/efectos de los fármacos , Línea Celular , Células Germinativas/metabolismo , Células Germinativas/fisiología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
10.
Toxicol In Vitro ; 61: 104629, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31442540

RESUMEN

To characterize the cellular effects and mechanism of arsenic trioxide (ATO)-induced hepatotoxicity in broiler chickens, increasing concentrations of ATO (0, 0.6, 1.2, 2.4, and 4.8 µM) were added to chicken hepatocyte cultures in vitro. The changes in hepatocyte morphology, oxidative stress and apoptosis were evaluated using fluorescence microscopy and flow cytometry. The effects of ATO on mRNA or protein expression of antioxidant enzymes, especially methionine sulfoxide reductase (Msr), were analyzed using qRT-PCR and western blotting assays. Increased apoptosis were concomitant with increased reactive oxygen species (ROS) accumulation and upregulation of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) with increasing ATO concentrations. Moreover, G1 phase arrest and dysregulation of the balance between antiapoptotic versus proapoptotic factors were noted. Furthermore, upregulation of HO-1, SOD-1, and TRX in the ATO groups were consistent with ATO-induced oxidative damage. High Msr, SOD-1, TRX, Bak1, Bax, and p53 protein levels in the ATO groups indicate that these proteins may have accumulated to counter ATO-induced oxidative stress. ROS scavenger N-acetyl-l-cysteine (NAC) could reverse ATO-induced oxidative damage and restore hepatocyte viability, even with compromised Msr function. Our findings suggest that Msr can protect broiler hepatocytes against ATO-induced oxidative stress. Furthermore, NAC-mediated reversal of oxidative damage may represent a strategy to mitigate potential economic losses associated with arsenic poisoning in the poultry industry.


Asunto(s)
Trióxido de Arsénico/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatocitos/efectos de los fármacos , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Células Cultivadas , Pollos , Hepatocitos/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
11.
Syst Biol Reprod Med ; 63(6): 364-369, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28771045

RESUMEN

Lipocalin-2 (LCN2) was known to play various roles in different type cells; however, little was known about the effect of LCN2 in male fertility. In this study, we aimed to explore the expression pattern of LCN2 with increasing age in mice, and to obtain insight into the role of LCN2 in mice testes by induced cryptorchidism and busulfan-treated infertility. In situ hybridization showed that LCN2 was localized primarily in Leydig cells, but was absent in Sertoli and germ cells. Its expression in testes exhibited an age-related increase from day 1 to 8 months, then reduced by the twelth month. The mRNA and protein levels of LCN2 in the testes of both infertile models increased as measured by real-time PCR and western blotting, respectively. LCN2 mRNA and protein levels were higher (p<0.05) in busulfan treated mice than that of cryptorchidism. These observations have shown that LCN2 is developmentally regulated and highly expressed in the Leydig cells of mouse testes.


Asunto(s)
Busulfano/farmacología , Criptorquidismo/metabolismo , Expresión Génica/fisiología , Infertilidad Masculina/metabolismo , Lipocalina 2/genética , Testículo/metabolismo , Envejecimiento/fisiología , Animales , Criptorquidismo/inducido químicamente , Criptorquidismo/patología , Hibridación in Situ , Infertilidad Masculina/inducido químicamente , Células Intersticiales del Testículo/química , Lipocalina 2/análisis , Lipocalina 2/fisiología , Masculino , Ratones , ARN Mensajero/análisis , Testículo/química , Testículo/patología
12.
Biol Trace Elem Res ; 177(1): 10-15, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27726061

RESUMEN

The aim of this study was to investigate the effects of copper ions on decidualization of human endometrial stromal cells (HESCs) cultured in vitro. Firstly, non-toxic concentrations of copper D-gluconate were screened in HESCs based on cell activity. Then, the effects of non-toxic concentrations of copper ions (0~250 µM) were examined on decidualization of human endometrial stromal cells. Our data demonstrated that the mRNA expressions of insulin-like growth factor binding protein (IGFBP-1), prolactin (PRL), Mn-SOD, and FOXO1were down-regulated during decidualization following the treatments with 100 or 250 µM copper ions. Meanwhile, the amount of malonaldehyde (MDA) in the supernatant of HESCs was increased. These results showed that in vitro decidualization of HESCs was impaired by copper treatment.


Asunto(s)
Cobre/farmacología , Células del Estroma/efectos de los fármacos , Cobre/administración & dosificación , Relación Dosis-Respuesta a Droga , Humanos , Iones/administración & dosificación , Iones/farmacología , Células del Estroma/metabolismo
13.
Biol Trace Elem Res ; 173(2): 427-32, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27025717

RESUMEN

The molecular mechanism for copper toxicity on spermatozoa quality in mice is not well understood. In a 4-week experiment, we challenged 24, 6-week-old male CD-1 mice with twice-a-week intraperitoneal copper chloride injections and evaluated spermatozoa quality, copper levels in the testes, serum testosterone, the expression of key antioxidant glutathione peroxidase 5 (GPx5), and the regulated androgen receptor (AR) in the mice testes. We compared these outcomes for four groups of six mice given doses of 0, 1.25, 2.5, 5.0 mg/kg weight copper chloride twice a week for 4 weeks. The mice demonstrated a copper increase spermatozoa head malformation in a dose-response manner. However, we observed no changes in spermatozoa viability and acrosome integrity in the ratio of mouse body weight to testes weight or in the histomorphology of the testes as the average copper level increased. Results of our RT-PCR assays, immunohistochemical tests, ELISA, and histochemistry analyses indicated that testis GPx5 expression was increased, AR expression in the testes was decreased, serum testosterone was decreased, and the activity of 3ß-hydroxysteroid dehydrogenase was decreased as the copper dose increased. In conclusion, these data show that sublethal exposure to copper induces spermatozoa head malformation and influences both mRNA and protein levels of GPx5 and AR which is related to copper resides in the testes.


Asunto(s)
Acrosoma/metabolismo , Cobre/toxicidad , Estrés Oxidativo/efectos de los fármacos , Testículo/metabolismo , Acrosoma/patología , Animales , Glutatión Peroxidasa/biosíntesis , Masculino , Ratones , Receptores Androgénicos/biosíntesis , Testículo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA