Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Sci Food Agric ; 104(10): 5944-5954, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38415770

RESUMEN

BACKGROUND: Soy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic field (LF-MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. RESULTS: Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water-holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF-MF treatment. The LF-MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF-MF modification time being 90 min. CONCLUSION: LF-MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant-based proteins in the food industry. © 2024 Society of Chemical Industry.


Asunto(s)
Globulinas , Glycine max , Campos Magnéticos , Solubilidad , Proteínas de Soja , Globulinas/química , Globulinas/metabolismo , Glycine max/química , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Reología , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Viscosidad
2.
Molecules ; 28(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513480

RESUMEN

To study the use of partial or total potassium bicarbonate (PBC) to replace sodium tripolyphosphate (STPP) on reduced-phosphate silver carp batters, all the batters were composed of silver carp surimi, pork back fat, ice water, spices, sugar, and sodium chloride. Therein, the sample of T1 contained 4 g/kg STPP; T2 contained 1 g/kg PBC, 3 g/kg STPP; T3 contained 2 g/kg PBC, 2 g/kg STPP; T4 contained 3 g/kg PBC, 1 g/kg STPP; T5 contained 4 g/kg PBC, and they were all produced using a bowl chopper. The changes in pH, whiteness, water- and oil-holding capacity, gel and rheological properties, as well as protein conformation were investigated. The pH, cooking yield, water- and oil-holding capacity, texture properties, and the G' values at 90 °C of the reduced-phosphate silver carp batters with PBC significantly increased (p < 0.05) compared to the sample without PBC. Due to the increasing pH and enhanced ion strength, more ß-sheet and ß-turns structures were formed. Furthermore, by increasing PBC, the pH significantly increased (p < 0.05) and the cooked silver carp batters became darkened. Meanwhile, more CO2 was generated, which destroyed the gel structure, leading the water- and oil-holding capacity, texture properties, and G' values at 90 °C to be increased and then decreased. Overall, using PBC partial as a substitute of STPP enables reduced-phosphate silver carp batter to have better gel characteristics and water-holding capacity by increasing its pH and changing its rheology characteristic and protein conformation.


Asunto(s)
Carpas , Agua , Animales , Agua/química , Fosfatos , Reología
3.
J Sci Food Agric ; 103(5): 2473-2482, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36658470

RESUMEN

BACKGROUND: Myosin is the most important component of myofibrillar protein, with excellent gelling properties. To date, heating treatment remains the mainstream method for forming gel in meat products, and it has the most extensive application in the field of meat industry. However, at present, there are few reports on the effects of heating rates on myosin self-assembly and aggregation behavior during heating treatment. RESULTS: The present study aimed to investigate the effects of different heating rates (1, 2, 3 and 5 °C min-1 ) on the self-assembly behavior, physicochemical, structural and gelling properties of myosin. At the lowest heating rate of 1 °C min-1 , the myosin gel had a dense microstructure, the highest elastic modulus (G') and water holding capacity compared to higher heating rates (2, 3 and 5 °C min-1 ). At higher temperatures (40, 45 °C), the surface hydrophobicity, turbidity, particle size distribution and self-assembly behavior of myosin in pre-gelling solutions showed that myosin had sufficient time to denature, underwent full structure unfolding before aggregation at the heating rate of 1°C min-1 , and formed regular and homogeneous spherical aggregates. Therefore, the myosin gel also had a better three-dimensional network. CONCLUSION: The heating rates had an important effect on the quality of myosin gels, and had theoretical implications for improving the quality of meat gel products. © 2023 Society of Chemical Industry.


Asunto(s)
Calefacción , Miosinas , Animales , Bovinos , Miosinas/química , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Geles/química
4.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364320

RESUMEN

To study the effects of an ultrasound (0, 30, and 60 min) and sodium bicarbonate (0% and 0.2%) combination on the reduced-salt pork myofibrillar protein, the changes in pH, turbidity, aggregation, and conformation were investigated. After the ultrasound-assisted sodium bicarbonate treatment, the pH increased by 0.80 units, the absolute value of Zeta potential, hydrophobic force, and active sulfhydryl group significantly increased (p < 0.05), and the turbidity and particle size significantly decreased (p < 0.05). Meanwhile, the fluorescence intensity decreased from 894 to 623, and the fluorescence peak showed a significant redshift, which indicated that the ultrasound-assisted sodium bicarbonate treatment exposed the non-polarity of the microenvironment in which the fluorescence emission group was located, leading to the microenvironment and protein structure of myofibrillar tryptophan being changed. Overall, an ultrasound-assisted sodium bicarbonate treatment could significantly improve pork myofibrillar protein solubility and change the protein structure under a reduced-salt environment.


Asunto(s)
Carne de Cerdo , Carne Roja , Animales , Porcinos , Bicarbonato de Sodio/farmacología , Proteínas , Solubilidad , Interacciones Hidrofóbicas e Hidrofílicas , Cloruro de Sodio , Cloruro de Sodio Dietético
5.
Molecules ; 27(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36557986

RESUMEN

The changes in the gel and rheological properties and water-holding capacity of PSE meat myofibrillar proteins with different amounts of sodium bicarbonate (SC, 0−0.6/100 g) were studied. Compared to the PSE meat myofibrillar proteins with 0/100 g SC, the texture properties and cooking yield significantly increased (p < 0.05) with increasing SC; meanwhile, adding SC caused the gel color to darken. All samples had similar curves with three phases, and the storage modulus (G') values significantly increased with the increasing SC. The thermal stability of the PSE meat myofibrillar proteins was enhanced, and the G' value at 80 °C increased with the increasing SC. Because water was bound more tightly to the protein matrix, the initial relaxation times of T21 and T22 shortened, the peak ratio of P21 significantly increased (p < 0.05), and the P22 significantly decreased (p < 0.05), which implied that the mobility of the water was reduced. Overall, SC could improve the thermal stability of the PSE meat myofibrillar proteins and increase the water-holding capacity and textural properties of the cooked PSE meat myofibrillar protein gels.


Asunto(s)
Proteínas de la Carne , Bicarbonato de Sodio , Agua , Culinaria , Reología , Geles
6.
J Food Sci Technol ; 58(8): 3243-3249, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34294987

RESUMEN

The effects of high pressure (100-500 MPa) and heated (80 °C, 25 min) combinations on gel properties, rheological characteristic and water distribution of pork batters were investigated. Compared to the only-heat, the cooking yield, a* value, hardness, cohesiveness, and chewiness of cooked pork batters treated less than 300 MPa were significantly increased (P < 0.05), meanwhile, the b* value was significantly decreased (P < 0.05). Opposite, the color and cooking yield were not significant different (P > 0.05) when over 300 MPa, except the L* value. At 300 MPa, the cooking yield, hardness, chewiness, and G' value at 80 °C of pork batter were the highest. The initial relaxation time of T21 was decreased significantly (P < 0.05), and the peak ration of P21 was increased significantly (P < 0.05) when treated at 200 and 300 MPa, that indicated the water was bound tightly and the ratio of immobilized water was increased. Overall, 300 MPa treatment and thermal combinations could improve the gel properties of pork batters.

7.
J Food Sci Technol ; 58(6): 2258-2264, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33967322

RESUMEN

The objective of this study was to evaluate relationship with aggregation, secondary structures and gel properties of pork myofibrillar protein with different sodium chloride (1%, 2% and 3%). When the sodium chloride increased from 1 to 3%, the active sulfhydryl, surface hydrophobicity, hardness and cooking yield of myofibrillar protein were increased significantly (p < 0.05), the particle size, total sulfhydryl and Zeta potential were decreased significantly (p < 0.05), these meant the aggregations of pork myofibrillar protein were decreased. The changes of proteins aggregation induced the strongest intensity band of Amide I shifted up from 1660 cm-1 to 1661 cm-1, meanwhile, the ß-sheet structure content was increased significantly (p < 0.05) with the sodium chloride increased. From the above, the lower proteins aggregation and higher ß-sheet structure content could improve the water holding capacity and texture of pork myofibrillar protein gel.

8.
J Food Sci Technol ; 57(4): 1301-1309, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32180626

RESUMEN

The effects of dynamic ultra-high pressure homogenization (UHPH) on the structure and functional properties of whey protein were investigated in this study. Whey protein solution of 10 mg/mL (1% w/w) was prepared and processed by a laboratory scale high pressure homogenizer with different pressures (25, 50, 100, 150, 200, and 250 MPa) at an initial temperature of 25 °C. Then, the solution samples were evaluated in terms of secondary structure, sulfhydryl and disulfide bond contents, surface hydrophobicity, average particle size, solubility, foaming capacity, emulsifying activity, and thermal properties. It was found that the secondary structure of whey protein changed with the dynamic UHPH treatment. The interchange reaction between the disulfide bond and the sulfhydryl group was promoted and the surface hydrophobicity significantly increased. The functional properties of the whey protein accordingly changed. Specifically, after dynamic UHPH treatment, the average particle size of the whey protein and emulsion decreased while the solubility, the foaming capability and the emulsification stability increased significantly. The results also revealed that with the dynamic UHPH at 150 MPa, the best improvement was observed in the whey protein functional properties. The whey protein solubility increased from 63.15 to 71.61% and the emulsification stability improved from 195 to 467 min.

9.
Food Microbiol ; 82: 89-98, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31027824

RESUMEN

Pseudomonas spp. have emerged as the main spoilage bacteria, with many strains easily forming biofilms on food-contact surfaces and causing cross-contamination. The efficacy of disinfectants against bacteria is usually tested with planktonic cells; however, the disinfection tolerance of biofilms, especially detached biofilms, remains unknown. Here, we investigated the tolerance responses of detached and adhered biofilms of Pseudomonas fluorescens to acidic electrolyzed water (AEW) by determining tolerance responses by plate counting, comparing them using a Weibull model, and verifying changes in bacterial morphology by scanning electron microscopy. The experimental data and the responses calculated using Weibull a (scale) and b (shape) parameters agreed well (R2 values: 0.974-0.999), and we found that AEW exhibited effective antimicrobial activity against P. fluorescens, with adhered biofilms were more resistant than detached biofilms and planktonic cells. Additionally, AEW increased the bacterial membrane permeability and decreased the membrane potential, intracellular ATP concentrations, and intracellular pH while also triggering the disruption of extracellular polymeric substances. These results demonstrated that the morphophysiological responses of detached and adhered biofilms differed significantly and provided information on disinfectant-resistance strategies potentially beneficial to the development of novel disinfection approaches.


Asunto(s)
Biopelículas/efectos de los fármacos , Desinfectantes/farmacología , Electrólisis , Pseudomonas fluorescens/efectos de los fármacos , Agua/farmacología , Ácidos/química , Permeabilidad de la Membrana Celular , Recuento de Colonia Microbiana , Desinfección/métodos , Potenciales de la Membrana/efectos de los fármacos , Microscopía Electrónica de Rastreo , Pseudomonas fluorescens/fisiología , Agua/química
10.
J Food Sci Technol ; 54(9): 2852-2860, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28928525

RESUMEN

A comprehensive study was conducted to evaluate the structural changes of meat and protein of pork batters produced by chopping or beating process through the phase-contrast micrograph, laser light scattering analyzer, scanning electronic microscopy and Raman spectrometer. The results showed that the shattered myofibrilla fragments were shorter and particle-sizes were smaller in the raw batter produced by beating process than those in the chopping process. Compared with the raw and cooked batters produced by chopping process, modifications in amide I and amide III bands revealed a significant decrease of α-helix content and an increase of ß-sheet, ß-turn and random coils content in the beating process. The changes in secondary structure of protein in the batter produced by beating process was thermally stable. Moreover, more tyrosine residues were buried, and more gauche-gauche-trans disulfide bonds conformations and hydrophobic interactions were formed in the batter produced by beating process.

11.
J Food Sci Technol ; 52(5): 2622-33, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25892760

RESUMEN

The effect of ultrasound treatments (40 kHz, 300 W) for different times (10, 20, 30 and 40 min) combined with different salt contents (1.0 %, 1.5 % and 2.0 %) on gel properties and water holding capacity (WHC) of chicken breast meat batter were investigated. Results showed salt level significantly (p < 0.05) affected the texture, storage modulus (G'), loss modulus (G″), cooking loss and WHC. Ultrasound treatments for 10 min and 20 min improved the texture and WHC, and had higher G' values. Compared with the controls (2 % salt), ultrasound treatment for 20 min with reduced-salt (1.5 %) had not significant effect (p > 0.05) on texture, cooking loss or WHC. However, longer ultrasound (40 min) treatment resulted in a decrease in hardness, G' value and WHC. Microstructural analysis revealed that gels treated with ultrasound for 20 min had a compact structure whereas those treated for 40 min contained more protein aggregations and more cavities. Low-field nuclear magnetic resonance (LF-NMR) indicated that ultrasound treatment for 20 min lowered the values of spin-spin relaxation time (T2) and increased the proportion of myofibillar water. Overall, high power ultrasound technology is a promising process which can improve the gelation properties and thereby allowing for a partial reduction in the salt levels in chicken meat gels.

12.
J Agric Food Chem ; 72(39): 21772-21780, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39295075

RESUMEN

This study aimed to explore the effects of S-nitrosylation on caspase-3 modification and its subsequent effects on beef myofibril degradation in vitro. Recombinant caspase-3 was reacted with different concentrations of S-nitrosoglutathione (GSNO, nitric oxide donor) at 37 °C for 30 min and subsequently incubated with purified myofibrillar protein from bovine semimembranosus muscle. Results indicated that the activity of caspase-3 was significantly reduced after GSNO treatments (P < 0.05) and showed a dose-dependent inhibitory effect, which was attributed to the increased S-nitrosylation extent of caspase-3. LC-MS/MS analysis revealed that caspase-3 was S-nitrosylated at cysteine sites 116, 170, 184, 220, and 264. Moreover, the degradation of desmin and troponin-T was notably suppressed by S-nitrosylated caspase-3 (P < 0.05). To conclude, protein S-nitrosylation could modify the cysteine residues of caspase-3, which accounts for the reduced caspase-3 activity and further represses its proteolytic ability on beef myofibrillar protein.


Asunto(s)
Caspasa 3 , Miofibrillas , Animales , Bovinos , Miofibrillas/química , Miofibrillas/metabolismo , Caspasa 3/metabolismo , Caspasa 3/química , Caspasa 3/genética , S-Nitrosoglutatión/química , S-Nitrosoglutatión/metabolismo , S-Nitrosoglutatión/farmacología , Espectrometría de Masas en Tándem , Cisteína/metabolismo , Cisteína/química , Proteolisis/efectos de los fármacos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Óxido Nítrico/metabolismo , Troponina T/metabolismo , Troponina T/química , Proteínas Musculares/metabolismo , Proteínas Musculares/química
13.
Meat Sci ; 212: 109465, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452565

RESUMEN

To study the impact of ultrasonic duration (0, 30, and 60 min) and sodium bicarbonate concentration (0% and 0.2%) on the gel properties of reduced-salt pork myofibrillar protein, the changes in cooking yield, colour, water retention, texture properties, and dynamic rheology were investigated. The findings revealed that added sodium bicarbonate significantly increased (P < 0.05) cooking yield, hardness, springiness, and strength of myofibrillar protein while reducing centrifugal loss. Furthermore, the incorporation of sodium bicarbonate led to a significant decrease in L⁎, a⁎, b⁎, and white values of cooked myofibrillar protein; these effects were further amplified with increasing ultrasonic duration (P < 0.05). Additionally, storage modulus (G') significantly increased for myofibrillar protein treated with ultrasonic-assisted sodium bicarbonate treatment resulting in a more compact gel structure post-cooking. In summary, the results demonstrated that ultrasonic-assisted sodium bicarbonate treatment could enhance the tightness of reduced-salt myofibrillar protein gel structure while improving the water retention and texture properties.


Asunto(s)
Carne de Cerdo , Carne Roja , Animales , Porcinos , Bicarbonato de Sodio , Ultrasonido , Carne Roja/análisis , Cloruro de Sodio , Cloruro de Sodio Dietético , Reología , Agua/química
14.
Food Chem X ; 22: 101341, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38586222

RESUMEN

In this study, the improvement mechanism of low-frequency alternating magnetic field (LF-AMF, 5 mT, 3 h) combined with calcium chloride (CaCl2, 0-100 mM) on the gel characteristics of low-salt myofibrillar protein (MP) was investigated. LF-AMF combined with 80 mM CaCl2 treatment increased solubility (32.71%), surface hydrophobicity (40.86 µg), active sulfhydryl content (22.57%), water-holding capacity (7.15%). Besides, the combined treatment decreased turbidity, particle size and intrinsic fluorescence strength of MP. Fourier transform infrared spectroscopy (FT-IR) results indicated that the combined treatment altered the secondary structure of MP by increasing ß-sheet and ß-turn, and reducing α-helix and random coil. The combined treatment also induced a high G' value and shortened T2 relaxation time for forming a homogeneous and compact gel structure. These results revealed that LF-AMF combined CaCl2 treatment could as a potential approach for modifying the gel characteristics of low-salt MP.

15.
Int J Biol Macromol ; 267(Pt 1): 131418, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582465

RESUMEN

In this work, the effects of low-frequency alternating magnetic fields (LF-AMF) on the physicochemical, conformational, and functional characteristics of myofibrillar protein (MP) after iterative freeze-thaw (FT) cycles were explored. With the increasing LF-AMF treatment time, the solubility, active sulfhydryl groups, surface hydrophobicity, emulsifiability, and emulsion stability of MP after five FT cycles evidently elevated and then declined, and the peak value was obtained at 3 h. Conversely, the moderate LF-AMF treatment time can significantly reduce the average particle size, carbonyl content, and endogenous fluorescence intensity of MP. The rheology results showed that various LF-AMF treatment times would elevate the G' value of MP after iterative FT cycles. The FTIR spectroscopy results suggested that LF-AMF influenced the secondary structure of MP after multiple FT cycles, resulting in a depression in α-helix content and an increment in ß-folding proportion. Moreover, LF-AMF treatment induced the gradually lighter and wider myosin heavy chain bands of MP, implying that LF-AMF accelerated the degradation of macromolecular aggregates. Therefore, the LF-AMF treatment efficaciously ameliorates the structural and functional deterioration of MP after iterative FT cycles and could be used as a potential quality-improving technology in the frozen meat industry.


Asunto(s)
Congelación , Campos Magnéticos , Proteínas Musculares , Reología , Proteínas Musculares/química , Miofibrillas/química , Solubilidad , Animales , Fenómenos Químicos , Conformación Proteica , Interacciones Hidrofóbicas e Hidrofílicas
16.
Gels ; 10(5)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38786264

RESUMEN

Emulsified meat products contain high animal fat content, and excessive intake of animal fat is not good for health, so people are paying more and more attention to reduced-fat meat products. This study investigated the impact of varying proportions of pork back-fat and/or resistant starch on the proximate composition, water and fat retention, texture properties, color, and rheology characteristic of pork batter. The results found that replacing pork back-fat with resistant starch and ice water significantly decreased the total lipid and energy contents of cooked pork batter (p < 0.05) while improving emulsion stability, cooking yield, texture, and rheology properties. Additionally, when the pork back-fat replacement ratio was no more than 50%, there was a significant increase in emulsion stability, cooking yield, hardiness, springiness, cohesiveness, chewiness, and L* and G' values (p < 0.05). Furthermore, resistant starch and ice water enhanced myosin head and tail thermal stability and increased G' value at 80 °C. However, the initial relaxation times significantly decreased (p < 0.05) and the peak ratio of P21 significantly increased from 84.62% to 94.03%, suggesting reduced fluidity of water. In conclusion, it is feasible to use resistant starch and ice water as a substitute for pork back-fat in order to produce reduced-fat pork batter with favorable gel and rheology properties.

17.
Int J Biol Macromol ; 277(Pt 2): 134006, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032898

RESUMEN

This study investigated the effect of different hydrocolloids on the improvement of the printability and post-processing stability of minced chicken meat, each hydrocolloid was prepared with 1 % formulation and compared with the control. The effects of these hydrocolloids on the rheological properties of chicken mince and complex model printing capability were explored separately, while the cooking loss and microstructure changes of the samples before and after heating were analyzed. The results showed that the chicken mince gel containing carrageenan was more suitable for printing, increased the yield stress and apparent viscosity of the samples, and the printing process was easier to mold. In addition, carrageenan increased the hardness of the samples, and the microstructures were compact and changed little during the heating process, and the water was locked in the gel matrix, reducing shape changes during the heating process. The use of hydrocolloids improves the stability of post-processing of chicken 3D printing.


Asunto(s)
Pollos , Coloides , Impresión Tridimensional , Reología , Animales , Coloides/química , Viscosidad , Carragenina/química , Culinaria , Calor , Temperatura , Productos de la Carne/análisis
18.
Foods ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338526

RESUMEN

The objective of this study was to investigate the effect of pork oxidation through modified atmosphere packaging (MAP) on gel characteristics of myofibrillar proteins (MP) during the heat-induced gelation process. The pork longissimus thoracis (LT) was treated by MAP at varying oxygen concentrations (0, 20, 40, 60, and 80% O2) with a 5-day storage at 4 °C for the detection of MP oxidation and gel properties. The findings showed the rise of O2 concentration resulted in a significant increase of carbonyl content, disulfide bond, and particle size, and a decrease of sulfhydryl content and MP solubility (p < 0.05). The gel textural properties and water retention ability were significantly improved in MAP treatments of 0-60% O2 (p < 0.05), but deteriorated at 80% O2 level. As the concentration of O2 increased, there was a marked decrease in the α-helix content within the gel, accompanied by a simultaneous increase in ß-sheet content (p < 0.05). Additionally, a judicious oxidation treatment (60% O2 in MAP) proved beneficial for crafting dense and uniform gel networks. Our data suggest that the oxidation treatment of pork mediated by O2 concentration in MAP is capable of reinforcing protein hydrophobic interaction and disulfide bond formation, thus contributing to the construction of superior gel structures and properties.

19.
Meat Sci ; 198: 109087, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36628894

RESUMEN

In this work, the differences in macrostructure and microstructure, rheology, and storage stability of pre-emulsified safflower oil (PSO) prepared by natural and magnetic field modified soy 11S globulin were analysised. It was concluded that the PSO with magnetic field modified soy 11S globulin (MPSO) has better emulsifying activity and physical stability. The changes in gel quality, oxidational sensitivity, rheological, and sensory properties of pork batters with different substitute ratios (0%, 25%, 50%, 75%, and 100%) of pork back-fat by MPSO with magnetic field modified soy 11S globulin were studied. Compared to the sample without MPSO, pork batter with MPSO showed higher emulsion stability, apparent viscosity, L⁎ value, springiness, cohesiveness, and expressible moisture, while lower a⁎ value and cooking loss. Moreover, added MPSO could be more uniformly distributed into the meat matrix with smaller holes. With the increase in the replacement proportion of pork back-fat, the hardness, water- and fat-holding capacity, and P21 of pork batter significantly decreased (P < 0.05). As revealed by sensory evaluation and TBARS, using MPSO to substitute for pork back-fat decreased the lipid oxidational sensitivity of pork batter, and without negative effects on the appearance, juiciness and overall acceptability. Overall, it is feasible to apply MPSO as a pork-fat replacer to produce reduced-animal fat pork batter with excellent gel and sensory properties.


Asunto(s)
Sustitutos de Grasa , Globulinas , Carne de Cerdo , Carne Roja , Animales , Porcinos , Manipulación de Alimentos , Aceite de Cártamo , Sustitutos de Grasa/química , Reología , Campos Magnéticos
20.
J Texture Stud ; 54(4): 571-581, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36793251

RESUMEN

The influence of the incorporation of Artemisia sphaerocephala krasch gum (ASK gum; 0-0.18%) on the water holding capability (WHC), texture, color, rheological property, water distribution, protein conformation and microstructure of pork batters was investigated. The results showed that the cooking yield, WHC and L* value of pork batter gels significantly increased (p < .05) with the increasing incorporation of ASK gum, and the highest value were observed at 0.15%; the a* value decreased significantly (p < .05) and no significance was obtained in b* value (p > .05); the hardness, elasticity, cohesiveness and chewiness increased first and then decreased, and reached the highest value at 0.15%. The rheological results showed that the higher G' value was obtained in pork batters by the incorporation of ASK gum; the low field NMR analysis indicated that ASK gum significantly increased the proportion of P2b and P21 (p < .05) and decreased the proportion of P22 ; Fourier transform infrared spectroscopy (FTIR) indicated that the ASK gum significantly reduced the α-helix content and increased the ß-sheet content (p < .05). Scanning electron microscopy results suggested that the incorporation of ASK gum could promote the formation of a more homogeneous and stable microstructure of pork batter gels. Therefore, appropriate incorporation (0.15%) of ASK gum may improve the gel properties of pork batters, and while excessive incorporation (0.18%) could weaken the gel properties.


Asunto(s)
Artemisia , Carne de Cerdo , Carne Roja , Animales , Porcinos , Artemisia/química , Agua/química , Geles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA