RESUMEN
Type 1 voltage-activated calcium channels (CaV1) in the plasma membrane trigger calcium release from the sarcoplasmic reticulum (SR) by two mechanisms. In voltage-induced calcium release (VICR), CaV1 voltage sensing domains are directly coupled to ryanodine receptors (RYRs), an SR calcium channel. In calcium-induced calcium release (CICR), calcium ions flowing through activated CaV1 channels bind and activate RYR channels. VICR is thought to occur exclusively in vertebrate skeletal muscle while CICR occurs in all other muscles (including all invertebrate muscles). Here, we use calcium-activated SLO-2 potassium channels to analyze CaV1-SR coupling in Caenorhabditis elegans body muscles. SLO-2 channels were activated by both VICR and external calcium. VICR-mediated SLO-2 activation requires two SR calcium channels (RYRs and IP3 Receptors), JPH-1/Junctophilin, a PDZ (PSD95, Dlg1, ZO-1 domain) binding domain (PBD) at EGL-19/CaV1's carboxy-terminus, and SHN-1/Shank (a scaffolding protein that binds EGL-19's PBD). Thus, VICR occurs in invertebrate muscles.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Canales de Calcio , Calcio , Proteínas de Transporte de Membrana , Proteínas Musculares , Canal Liberador de Calcio Receptor de Rianodina , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Músculos/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Señalización del Calcio/fisiologíaRESUMEN
Two models have been proposed for endophilin function in synaptic vesicle (SV) endocytosis. The scaffolding model proposes that endophilin's SH3 domain recruits essential endocytic proteins, whereas the membrane-bending model proposes that the BAR domain induces positively curved membranes. We show that mutations disrupting the scaffolding function do not impair endocytosis, whereas those disrupting membrane bending cause significant defects. By anchoring endophilin to the plasma membrane, we show that endophilin acts prior to scission to promote endocytosis. Despite acting at the plasma membrane, the majority of endophilin is targeted to the SV pool. Photoactivation studies suggest that the soluble pool of endophilin at synapses is provided by unbinding from the adjacent SV pool and that the unbinding rate is regulated by exocytosis. Thus, endophilin participates in an association-dissociation cycle with SVs that parallels the cycle of exo- and endocytosis. This endophilin cycle may provide a mechanism for functionally coupling endocytosis and exocytosis.
Asunto(s)
Caenorhabditis elegans/citología , Endocitosis , Exocitosis , Vesículas Sinápticas/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Mutación , Estructura Terciaria de Proteína , Proteínas de Unión al GTP rab/metabolismoRESUMEN
Changes in neurotransmitter receptor abundance at post-synaptic elements play a pivotal role in regulating synaptic strength. For this reason, there is significant interest in identifying and characterizing the scaffolds required for receptor localization at different synapses. Here we analyze the role of two C. elegans post-synaptic scaffolding proteins (LIN-2/CASK and FRM-3/FARP) at cholinergic neuromuscular junctions. Constitutive knockouts or muscle specific inactivation of lin-2 and frm-3 dramatically reduced spontaneous and evoked post-synaptic currents. These synaptic defects resulted from the decreased abundance of two classes of post-synaptic ionotropic acetylcholine receptors (ACR-16/CHRNA7 and levamisole-activated AChRs). LIN-2's AChR scaffolding function is mediated by its SH3 and PDZ domains, which interact with AChRs and FRM-3/FARP, respectively. Thus, our findings show that post-synaptic LIN-2/FRM-3 complexes promote cholinergic synaptic transmission by recruiting AChRs to post-synaptic elements.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transmisión Sináptica/genética , Colinérgicos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Helminto/metabolismoRESUMEN
We show that miR-1, a conserved muscle-specific microRNA, regulates aspects of both pre- and postsynaptic function at C. elegans neuromuscular junctions. miR-1 regulates the expression level of two nicotinic acetylcholine receptor (nAChR) subunits (UNC-29 and UNC-63), thereby altering muscle sensitivity to acetylcholine (ACh). miR-1 also regulates the muscle transcription factor MEF-2, which results in altered presynaptic ACh secretion, suggesting that MEF-2 activity in muscles controls a retrograde signal. The effect of the MEF-2-dependent retrograde signal on secretion is mediated by the synaptic vesicle protein RAB-3. Finally, acute activation of levamisole-sensitive nAChRs stimulates MEF-2-dependent transcriptional responses and induces the MEF-2-dependent retrograde signal. We propose that miR-1 refines synaptic function by coupling changes in muscle activity to changes in presynaptic function.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , MicroARNs/metabolismo , Unión Neuromuscular/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Levamisol/farmacología , MicroARNs/genética , Mutación , Agonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Transcripción Genética , Proteínas de Unión al GTP rab3/metabolismoAsunto(s)
Anemia , Insuficiencia Renal Crónica , Glicina/análogos & derivados , Humanos , IsoquinolinasRESUMEN
C. elegans undergoes periods of behavioral quiescence during larval molts (termed lethargus) and as adults. Little is known about the circuit mechanisms that establish these quiescent states. Lethargus and adult locomotion quiescence is dramatically reduced in mutants lacking the neuropeptide receptor NPR-1. Here, we show that the aroused locomotion of npr-1 mutants results from the exaggerated activity in multiple classes of sensory neurons, including nociceptive (ASH), touch sensitive (ALM and PLM), and stretch sensing (DVA) neurons. These sensory neurons accelerate locomotion via both neuropeptide and glutamate release. The relative contribution of these sensory neurons to arousal differs between larval molts and adults. Our results suggest that a broad network of sensory neurons dictates transitions between aroused and quiescent behavioral states.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Movimiento Celular/fisiología , Ácido Glutámico/metabolismo , Neuropéptidos/metabolismo , Receptores de Neuropéptido Y/genética , Células Receptoras Sensoriales/metabolismo , Animales , Nivel de Alerta/fisiología , Conducta Animal/fisiología , Caenorhabditis elegans/metabolismo , Nociceptores/metabolismo , Sueño/fisiologíaRESUMEN
Hypoxia-inducible factor (HIF) plays a crucial role in the response to hypoxia at the cellular, tissue, and organism level. New agents under development to pharmacologically manipulate HIF may provide new and exciting possibilities in the treatment of anemia of chronic kidney disease (CKD) as well as in multiple other disease states involving ischemia-reperfusion injury. This article provides an overview of recent studies describing current standards of care for patients with anemia in CKD and associated clinical issues, and those supporting the clinical potential for targeting HIF stabilization with HIF prolyl-hydroxylase inhibitors (HIF-PHI) in these patients. Additionally, articles reporting the clinical potential for HIF-PHIs in 'other' putative therapeutic areas, the tissue and intracellular distribution of HIF- and prolyl-hydroxylase domain (PHD) isoforms, and HIF isoforms targeted by the different PHDs, were identified. There is increasing uncertainty regarding the optimal treatment for anemia of CKD with poorer outcomes associated with treatment to higher hemoglobin targets, and the increasing use of iron and consequent risk of iron imbalance. Attainment and maintenance of more physiologic erythropoietin levels associated with HIF stabilization may improve the management of patients resistant to treatment with erythropoiesis-stimulating agents and improve outcomes at higher hemoglobin targets.
Asunto(s)
Anemia/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Insuficiencia Renal Crónica/metabolismo , Anemia/tratamiento farmacológico , Anemia/etiología , Humanos , Inhibidores de Prolil-Hidroxilasa/uso terapéutico , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológicoRESUMEN
A neuropeptide (NLP-12) and its receptor (CKR-2) potentiate tonic and evoked ACh release at Caenorhabditis elegans neuromuscular junctions. Increased evoked release is mediated by a presynaptic pathway (egl-30 Gαq and egl-8 PLCß) that produces DAG, and by DAG binding to short and long UNC-13 proteins. Potentiation of tonic ACh release persists in mutants deficient for egl-30 Gαq and egl-8 PLCß and requires DAG binding to UNC-13L (but not UNC-13S). Thus, NLP-12 adjusts tonic and evoked release by distinct mechanisms.
Asunto(s)
Acetilcolina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Unión Neuromuscular/metabolismo , Neuropéptidos/metabolismo , Animales , Caenorhabditis elegans , Diglicéridos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Fosfolipasa C beta/metabolismoRESUMEN
Secretion of neurotransmitters and neuropeptides is mediated by exocytosis of distinct secretory organelles, synaptic vesicles (SVs) and dense core vesicles (DCVs) respectively. Relatively little is known about factors that differentially regulate SV and DCV secretion. Here we identify a novel protein RIC-7 that is required for neuropeptide secretion in Caenorhabditis elegans. The RIC-7 protein is expressed in all neurons and is localized to presynaptic terminals. Imaging, electrophysiology, and behavioral analysis of ric-7 mutants indicates that acetylcholine release occurs normally, while neuropeptide release is significantly decreased. These results suggest that RIC-7 promotes DCV-mediated secretion.
Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Terminales Presinápticos/metabolismo , Acetilcolina/metabolismo , Aldicarb , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Hipersensibilidad a las Drogas/genética , Exocitosis , Músculo Esquelético/efectos de los fármacos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Vesículas Secretoras/genética , Vesículas Secretoras/metabolismo , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
We describe a retrograde synaptic signal at the C. elegans GABAergic neuromuscular junction. At this synapse, GABA release is controlled by two voltage-activated calcium channels (UNC-2/CaV2 and EGL-19/CaV1), and muscle responses are mediated by a single GABA receptor (UNC-49/GABAA). Mutations inactivating UNC-49 or those preventing UNC-49 synaptic clustering cause retrograde defects in GABAergic motor neurons, whereby UNC-2/CaV2 levels at active zones, UNC-2 current, and pre-synaptic GABA release are decreased. Inactivating post-synaptic GABAA receptors has no effect on GABA neuron EGL-19/CaV1 levels nor on several other pre-synaptic markers. The effect of GABAA receptors on pre-synaptic strength is not a consequence of decreased GABA transmission and is input selective. Finally, pre-synaptic UNC-2/CaV2 levels are increased when post-synaptic GABAA receptors are increased but are unaffected by increased extra-synaptic receptors. Collectively, these results suggest that clustered post-synaptic GABAA receptors adjust the strength of their inputs by recruiting CaV2 to contacting active zones.
Asunto(s)
Caenorhabditis elegans , Receptores de GABA-A , Animales , Caenorhabditis elegans/fisiología , Ácido gamma-Aminobutírico/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiologíaRESUMEN
Mutations altering the scaffolding protein Shank are linked to several psychiatric disorders, and to synaptic and behavioral defects in mice. Among its many binding partners, Shank directly binds CaV1 voltage activated calcium channels. Here, we show that the Caenorhabditis elegans SHN-1/Shank promotes CaV1 coupling to calcium activated potassium channels. Mutations inactivating SHN-1, and those preventing SHN-1 binding to EGL-19/CaV1 all increase action potential durations in body muscles. Action potential repolarization is mediated by two classes of potassium channels: SHK-1/KCNA and SLO-1 and SLO-2 BK channels. BK channels are calcium-dependent, and their activation requires tight coupling to EGL-19/CaV1 channels. SHN-1's effects on AP duration are mediated by changes in BK channels. In shn-1 mutants, SLO-2 currents and channel clustering are significantly decreased in both body muscles and neurons. Finally, increased and decreased shn-1 gene copy number produce similar changes in AP width and SLO-2 current. Collectively, these results suggest that an important function of Shank is to promote microdomain coupling of BK with CaV1.
Asunto(s)
Proteínas de Caenorhabditis elegans , Canales de Potasio de Gran Conductancia Activados por el Calcio , Potenciales de Acción , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Calcio de la Dieta , Proteínas Portadoras/metabolismo , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Proteínas de Transporte de Membrana/metabolismo , RatonesRESUMEN
Systematic analysis of rich behavioral recordings is being used to uncover how circuits encode complex behaviors. Here, we apply this approach to embryos. What are the first embryonic behaviors and how do they evolve as early neurodevelopment ensues? To address these questions, we present a systematic description of behavioral maturation for Caenorhabditis elegans embryos. Posture libraries were built using a genetically encoded motion capture suit imaged with light-sheet microscopy and annotated using custom tracking software. Analysis of cell trajectories, postures, and behavioral motifs revealed a stereotyped developmental progression. Early movement is dominated by flipping between dorsal and ventral coiling, which gradually slows into a period of reduced motility. Late-stage embryos exhibit sinusoidal waves of dorsoventral bends, prolonged bouts of directed motion, and a rhythmic pattern of pausing, which we designate slow wave twitch (SWT). Synaptic transmission is required for late-stage motion but not for early flipping nor the intervening inactive phase. A high-throughput behavioral assay and calcium imaging revealed that SWT is elicited by the rhythmic activity of a quiescence-promoting neuron (RIS). Similar periodic quiescent states are seen prenatally in diverse animals and may play an important role in promoting normal developmental outcomes.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Neuronas/fisiología , PosturaRESUMEN
Chemical synapses are complex structures that mediate rapid intercellular signalling in the nervous system. Proteomic studies suggest that several hundred proteins will be found at synaptic specializations. Here we describe a systematic screen to identify genes required for the function or development of Caenorhabditis elegans neuromuscular junctions. A total of 185 genes were identified in an RNA interference screen for decreased acetylcholine secretion; 132 of these genes had not previously been implicated in synaptic transmission. Functional profiles for these genes were determined by comparing secretion defects observed after RNA interference under a variety of conditions. Hierarchical clustering identified groups of functionally related genes, including those involved in the synaptic vesicle cycle, neuropeptide signalling and responsiveness to phorbol esters. Twenty-four genes encoded proteins that were localized to presynaptic specializations. Loss-of-function mutations in 12 genes caused defects in presynaptic structure.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Sinapsis/genética , Sinapsis/fisiología , Transmisión Sináptica/genética , Aldicarb/farmacología , Animales , Análisis por Conglomerados , Citoesqueleto/metabolismo , Resistencia a Medicamentos/genética , Fluorescencia , Perfilación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Neuronas Motoras/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/citología , Unión Neuromuscular/genética , Unión Neuromuscular/fisiología , Neuropéptidos/metabolismo , Ésteres del Forbol/farmacología , Transporte de Proteínas , Proteínas R-SNARE , Interferencia de ARN , Sinapsis/química , Vesículas Sinápticas/metabolismoRESUMEN
Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Insulina/metabolismo , Longevidad/genética , Proteínas de la Membrana/genética , Sinapsis/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Perfilación de la Expresión Génica , Secreción de Insulina , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Terminales Presinápticos/metabolismo , Transducción de Señal , Somatomedinas/metabolismo , Sinapsis/genéticaRESUMEN
The secretion of neurotransmitters and neuropeptides is mediated by distinct organelles-synaptic vesicles (SVs) and dense-core vesicles (DCVs), respectively. Relatively little is known about the factors that differentially regulate SV and DCV secretion. Here we show that protein kinase C-1 (PKC-1), which is most similar to the vertebrate PKC eta and epsilon isoforms, regulates exocytosis of DCVs in Caenorhabditis elegans motor neurons. Mutants lacking PCK-1 activity had delayed paralysis induced by the acetylcholinesterase inhibitor aldicarb, whereas mutants with increased PKC-1 activity had more rapid aldicarb-induced paralysis. Imaging and electrophysiological assays indicated that SV release occurred normally in pkc-1 mutants. By contrast, genetic analysis of aldicarb responses and imaging of fluorescently tagged neuropeptides indicated that mutants lacking PKC-1 had reduced neuropeptide secretion. Similar neuropeptide secretion defects were found in mutants lacking unc-31 (encoding the protein CAPS) or unc-13 (encoding Munc13). These results suggest that PKC-1 selectively regulates DCV release from neurons.
Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Neuronas Motoras/metabolismo , Neuropéptidos/metabolismo , Proteína Quinasa C/fisiología , Aldicarb/farmacología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas Portadoras , Inhibidores de la Colinesterasa/farmacología , Clonación Molecular/métodos , Diagnóstico por Imagen/métodos , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Exocitosis/efectos de los fármacos , Exocitosis/genética , Expresión Génica/genética , Proteínas Fluorescentes Verdes/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Neuronas Motoras/efectos de los fármacos , Músculos/efectos de los fármacos , Músculos/metabolismo , Proteínas Mutantes/fisiología , Técnicas de Placa-Clamp/métodos , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/fisiologíaRESUMEN
The junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole Caenorhabditis elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 colocalizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68 RyR calcium channel, and is required for animal movement. In neurons, JPH-1 colocalizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) in the soma, and is present near presynaptic release sites. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-2 have antagonistic roles in neuromuscular synaptic transmission. Additionally, we find an unexpected cell nonautonomous effect of jph-1 in axon regrowth after injury. Genetic double mutant analysis suggests that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and with unc-68 for animal health and development. Finally, we show that jph-1 regulates the colocalization of EGL-19 and UNC-68 and that unc-68 is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.
Asunto(s)
Proteínas de la Membrana/metabolismo , Transmisión Sináptica , Sinaptotagminas/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/genética , Unión Neuromuscular/metabolismo , Proyección Neuronal , Neuronas/citología , Neuronas/metabolismo , Transporte de Proteínas , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sinaptotagminas/genéticaRESUMEN
Egg laying in the nematode worm Caenorhabditis elegans is a two-state behavior modulated by internal and external sensory input. We have previously shown that homeostatic feedback of embryo accumulation in the uterus regulates bursting activity of the serotonergic HSN command neurons that sustains the egg-laying active state. How sensory feedback of egg release signals to terminate the egg-laying active state is less understood. We find that Gαo, a conserved Pertussis Toxin-sensitive G protein, signals within HSN to inhibit egg-laying circuit activity and prevent entry into the active state. Gαo signaling hyperpolarizes HSN, reducing HSN Ca2+ activity and input onto the postsynaptic vulval muscles. Loss of inhibitory Gαo signaling uncouples presynaptic HSN activity from a postsynaptic, stretch-dependent homeostat, causing precocious entry into the egg-laying active state when only a few eggs are present in the uterus. Feedback of vulval opening and egg release activates the uv1 neuroendocrine cells which release NLP-7 neuropeptides which signal to inhibit egg laying through Gαo-independent mechanisms in the HSNs and Gαo-dependent mechanisms in cells other than the HSNs. Thus, neuropeptide and inhibitory Gαo signaling maintain a bi-stable state of electrical excitability that dynamically controls circuit activity in response to both external and internal sensory input to drive a two-state behavior output.
Asunto(s)
Potenciales de Acción , Proteínas de Caenorhabditis elegans/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Neuronas/metabolismo , Oviposición , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Calcio/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Contracción Muscular , Neuronas/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transducción de Señal , Vulva/citología , Vulva/inervación , Vulva/fisiologíaRESUMEN
The development of functional synapses in the nervous system is important for animal physiology and behaviors, and its disturbance has been linked with many neurodevelopmental disorders. The synaptic transmission efficacy can be modulated by the environment to accommodate external changes, which is crucial for animal reproduction and survival. However, the underlying plasticity of synaptic transmission remains poorly understood. Here we show that in Caenorhabditis elegans, the male environment increases the hermaphrodite cholinergic transmission at the neuromuscular junction (NMJ), which alters hermaphrodites' locomotion velocity and mating efficiency. We identify that the male-specific pheromones mediate this synaptic transmission modulation effect in a developmental stage-dependent manner. Dissection of the sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to the male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels and clustering of postsynaptic acetylcholine receptors at cholinergic synapses of NMJ, which potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for synaptic modulation and behavioral flexibility by sexual dimorphic pheromones.
Asunto(s)
Caenorhabditis elegans/fisiología , Feromonas/metabolismo , Transmisión Sináptica , Animales , Femenino , Masculino , Unión Neuromuscular/fisiología , Factores SexualesRESUMEN
Priming of synaptic vesicles (SVs) is essential for synaptic transmission. UNC-13 proteins are required for priming. Current models propose that UNC-13 stabilizes the open conformation of Syntaxin, in which the SNARE helix is available for interactions with Synaptobrevin and SNAP-25. Here we show that Tomosyn inhibits SV priming. Tomosyn contains a SNARE motif, which forms an inhibitory SNARE complex with Syntaxin and SNAP-25. Mutants lacking Tomosyn have increased synaptic transmission, an increased pool of primed vesicles, and increased abundance of UNC-13 at synapses. Behavioral, imaging, and electrophysiological studies suggest that SV priming was reconstituted in unc-13 mutants by expressing a constitutively open mutant Syntaxin, or by mutations eliminating Tomosyn. Thus, priming is modulated by the balance between Tomosyn and UNC-13, perhaps by regulating the availability of open-Syntaxin. Even when priming was restored, synaptic transmission remained defective in unc-13 mutants, suggesting that UNC-13 is also required for other aspects of secretion.