Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 27(2): 1145-1157, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35169262

RESUMEN

Bipolar disorder is a severe and chronic psychiatric disease resulting from a combination of genetic and environmental risk factors. Here, we identified a significant higher mutation rate in a gene encoding the calcium-dependent activator protein for secretion (CADPS) in 132 individuals with bipolar disorder, when compared to 184 unaffected controls or to 21,070 non-psychiatric and non-Finnish European subjects from the Exome Aggregation Consortium. We found that most of these variants resulted either in a lower abundance or a partial impairment in one of the basic functions of CADPS in regulating neuronal exocytosis, synaptic plasticity and vesicular transporter-dependent uptake of catecholamines. Heterozygous mutant mice for Cadps+/- revealed that a decreased level of CADPS leads to manic-like behaviours, changes in BDNF level and a hypersensitivity to stress. This was consistent with more childhood trauma reported in families with mutation in CADPS, and more specifically in mutated individuals. Furthermore, hyperactivity observed in mutant animals was rescued by the mood-stabilizing drug lithium. Overall, our results suggest that dysfunction in calcium-dependent vesicular exocytosis may increase the sensitivity to environmental stressors enhancing the risk of developing bipolar disorder.


Asunto(s)
Trastorno Bipolar , Animales , Trastorno Bipolar/genética , Calcio/metabolismo , Proteínas de Unión al Calcio , Exocitosis , Humanos , Ratones , Mutación/genética , Proteínas del Tejido Nervioso , Plasticidad Neuronal , Proteínas de Transporte Vesicular
2.
Ann Neurol ; 82(1): 133-138, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28556183

RESUMEN

Glucose transporter type 1 (GLUT1) deficiency syndrome (GLUT1-DS) leads to a wide range of neurological symptoms. Ketogenic diets are very efficient to control epilepsy and movement disorders. We tested a novel simple and rapid blood test in 30 patients with GLUT1-DS with predominant movement disorders, 18 patients with movement disorders attributed to other genetic defects, and 346 healthy controls. We detected significantly reduced GLUT1 expression only on red blood cells from patients with GLUT1-DS (23 patients; 78%), including patients with inconclusive genetic analysis. This test opens perspectives for the screening of GLUT1-DS in children and adults with cognitive impairment, movement disorder, or epilepsy. Ann Neurol 2017;82:133-138.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/diagnóstico , Transportador de Glucosa de Tipo 1/biosíntesis , Pruebas Hematológicas , Proteínas de Transporte de Monosacáridos/deficiencia , Adolescente , Adulto , Errores Innatos del Metabolismo de los Carbohidratos/sangre , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Transporte de Monosacáridos/sangre , Trastornos del Movimiento/sangre , Trastornos del Movimiento/diagnóstico , Adulto Joven
3.
J Neurosci ; 35(23): 8718-29, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26063906

RESUMEN

In the developing telencephalon, the medial ganglionic eminence (MGE) generates many cortical and virtually all striatal interneurons. While the molecular mechanisms controlling the migration of interneurons to the cortex have been extensively studied, very little is known about the nature of the signals that guide interneurons to the striatum. Here we report that the allocation of MGE-derived interneurons in the developing striatum of the mouse relies on a combination of chemoattractive and chemorepulsive activities. Specifically, interneurons migrate toward the striatum in response to Nrg1/ErbB4 chemoattraction, and avoid migrating into the adjacent cortical territories by a repulsive activity mediated by EphB/ephrinB signaling. Our results also suggest that the responsiveness of MGE-derived striatal interneurons to these cues is at least in part controlled by the postmitotic activity of the transcription factor Nkx2-1. This study therefore reveals parallel mechanisms for the migration of MGE-derived interneurons to the striatum and the cerebral cortex.


Asunto(s)
Movimiento Celular/genética , Cuerpo Estriado/citología , Interneuronas/fisiología , Vías Nerviosas/fisiología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Corteza Cerebelosa/citología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Proteínas Nucleares/genética , Técnicas de Cultivo de Órganos , Receptor EphB1/genética , Receptor EphB1/metabolismo , Receptor EphB3/genética , Receptor EphB3/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Transducción de Señal , Telencéfalo/citología , Telencéfalo/embriología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética
4.
Dev Neurosci ; 30(1-3): 171-86, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18075264

RESUMEN

The doublecortin (DCX) gene, mutated in X-linked human lissencephaly, has 2 close paralogs, doublecortin-like kinase 1 and 2 (Dclk1 and 2). In this study we attempted to better understand the dramatic differences between human and mouse DCX/Dcx-deficient phenotypes, focusing on the Dclk genes which are likely to compensate for Dcx function in the mouse. Using sequence database screens, Northern blot analyses and in situ hybridization experiments, we characterized the developmental transcripts of Dclk1 and 2, questioning their conservation between mouse and human, and their similarity to Dcx. Like Dcx, Dcx-like transcripts of the Dclk1 gene are expressed in postmitotic neurons in the developing cortex. No changes of expression were observed at the RNA level for these transcripts in Dcx knockout mice. However, a minor change in expression at the protein level was detected. The Dclk2 gene is less well characterized than Dclk1 and we show here that it is expressed both in proliferating cells and postmitotic neurons, with a notably strong expression in the ventral telencephalon. No major differences in Dclk2 expression at the RNA and protein levels were identified comparing Dcx knockout and wild-type brains. We also analyzed Dclk1 and 2 expression in the hippocampal CA3 region which, unlike the neocortex, is abnormal in Dcx knockout mice. Interestingly, each transcript was expressed in CA3 neurons, including in the heterotopic pyramidal layer of Dcx knockout animals, but is presumably not able to compensate for a lack of Dcx. These results, in addition to characterizing the transcript diversity of an important family of genes, should facilitate further studies of compensation in Dcx-deficient mice.


Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Malformaciones del Sistema Nervioso/genética , Neuropéptidos/genética , Proteínas Serina-Treonina Quinasas/genética , Telencéfalo/anomalías , Empalme Alternativo/genética , Animales , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , Corteza Cerebral/anomalías , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Secuencia Conservada/genética , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Quinasas Similares a Doblecortina , Regulación del Desarrollo de la Expresión Génica/genética , Hipocampo/anomalías , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/fisiopatología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Fenotipo , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Telencéfalo/citología , Telencéfalo/metabolismo
5.
J Comp Neurol ; 500(2): 239-54, 2007 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-17111359

RESUMEN

Mutated doublecortin (DCX) gives rise to severe abnormalities in human cortical development. Adult Dcx knockout mice show no major neocortical defects but do have a disorganized hippocampus. We report here the developmental basis of these hippocampal abnormalities. A heterotopic band of neurons was identified starting at E17.5 in the CA3 region and progressing throughout the CA1 region by E18.5. At neonatal stages, the CA1 heterotopic band was reduced, but the CA3 band remained unchanged, continuing into adulthood. Thus, in mouse, migration of CA3 neurons is arrested during development, whereas CA1 cell migration is retarded. On the Sv129Pas background, magnetic resonance imaging (MRI) also suggested abnormal dorsal hippocampal morphology, displaced laterally and sometimes rostrally and associated with medial brain structure abnormalities. MRI and cryosectioning showed agenesis of the corpus callosum in Dcx knockout mice on this background and an intermediate, partial agenesis in heterozygote mice. Wild-type littermates showed no callosal abnormalities. Hippocampal and corpus callosal abnormalities were also characterized in DCX-mutated human patients. Severe hippocampal hypoplasia was identified along with variable corpus callosal defects ranging from total agenesis to an abnormally thick or thin callosum. Our data in the mouse, identifying roles for Dcx in hippocampal and corpus callosal development, might suggest intrinsic roles for human DCX in the development of these structures.


Asunto(s)
Agenesia del Cuerpo Calloso , Hipocampo/anomalías , Proteínas Asociadas a Microtúbulos/genética , Malformaciones del Sistema Nervioso/diagnóstico , Neuropéptidos/genética , Feto Abortado , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Coristoma/diagnóstico , Coristoma/genética , Coristoma/metabolismo , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo
6.
PLoS One ; 3(6): e2473, 2008 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-18575605

RESUMEN

Patients with Doublecortin (DCX) mutations have severe cortical malformations associated with mental retardation and epilepsy. Dcx knockout (KO) mice show no major isocortical abnormalities, but have discrete hippocampal defects. We questioned the functional consequences of these defects and report here that Dcx KO mice are hyperactive and exhibit spontaneous convulsive seizures. Changes in neuropeptide Y and calbindin expression, consistent with seizure occurrence, were detected in a large proportion of KO animals, and convulsants, including kainate and pentylenetetrazole, also induced seizures more readily in KO mice. We show that the dysplastic CA3 region in KO hippocampal slices generates sharp wave-like activities and possesses a lower threshold for epileptiform events. Video-EEG monitoring also demonstrated that spontaneous seizures were initiated in the hippocampus. Similarly, seizures in human patients mutated for DCX can show a primary involvement of the temporal lobe. In conclusion, seizures in Dcx KO mice are likely to be due to abnormal synaptic transmission involving heterotopic cells in the hippocampus and these mice may therefore provide a useful model to further study how lamination defects underlie the genesis of epileptiform activities.


Asunto(s)
Epilepsia/genética , Hipocampo/fisiopatología , Proteínas Asociadas a Microtúbulos/fisiología , Neuropéptidos/fisiología , Animales , Convulsivantes/farmacología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Epilepsia/fisiopatología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Neuropéptidos/genética
7.
Eur J Neurosci ; 23(4): 877-93, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16519653

RESUMEN

Epilepsy and mental retardation, originally of unknown cause, are now known to result from many defects including cortical malformations, neuronal circuitry disorders and perturbations of neuronal communication and synapse function. Genetic approaches in combination with MRI and related imaging techniques continually allow a re-evaluation and better classification of these disorders. Here we review our current understanding of some of the primary defects involved, with insight from recent molecular biology advances, the study of mouse models and the results of neuropathology analyses. Through these studies the molecular determinants involved in the control of neuron number, neuronal migration, generation of cortical laminations and convolutions, integrity of the basement membrane at the pial surface, and the establishment of neuronal circuitry are being elucidated. We have attempted to integrate these results with the available data concerning, in particular, human brain development, and to emphasize the limitations in some cases of extrapolating from rodent models. Taking such species differences into account is clearly critical for understanding the pathophysiological mechanisms associated with these disorders.


Asunto(s)
Encefalopatías , Corteza Cerebral , Animales , Encefalopatías/genética , Encefalopatías/historia , Encefalopatías/patología , Movimiento Celular , Proliferación Celular , Corteza Cerebral/anomalías , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Humanos , Mutación
8.
EMBO J ; 25(19): 4448-57, 2006 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-16957770

RESUMEN

Doublecortin is a neuronal microtubule-stabilising protein, mutations of which cause mental retardation and epilepsy in humans. How doublecortin influences microtubule dynamics, and thereby brain development, is unclear. We show here by video microscopy that purified doublecortin has no effect on the growth rate of microtubules. However, it is a potent anti-catastrophe factor that stabilises microtubules by linking adjacent protofilaments and counteracting their outward bending in depolymerising microtubules. We show that doublecortin-stabilised microtubules are substrates for kinesin translocase motors and for depolymerase kinesins. In addition, doublecortin does not itself oligomerise and does not bind to tubulin heterodimers but does nucleate microtubules. In cells, doublecortin is enriched at the distal ends of neuronal processes and our data raise the possibility that the function of doublecortin in neurons is to drive assembly and stabilisation of non-centrosomal microtubules in these doublecortin-enriched distal zones. These distinct properties combine to give doublecortin a unique function in microtubule regulation, a role that cannot be compensated for by other microtubule-stabilising proteins and nucleating factors.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Animales , Transporte Biológico , Fenómenos Biomecánicos , Bovinos , Núcleo Celular/metabolismo , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Humanos , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/ultraestructura , Modelos Biológicos , Unión Proteica , Ratas , Erizos de Mar , Especificidad por Sustrato , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura
9.
Hum Mol Genet ; 15(9): 1387-400, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16571605

RESUMEN

Type I lissencephaly results from mutations in the doublecortin (DCX) and LIS1 genes. We generated Dcx knockout mice to further understand the pathophysiological mechanisms associated with this cortical malformation. Dcx is expressed in migrating interneurons in developing human and mouse brains. Video microscopy analyses of such tangentially migrating neuron populations derived from the medial ganglionic eminence show defects in migratory dynamics. Specifically, the formation and division of growth cones, leading to the production of new branches, are more frequent in knockout cells, although branches are less stable. Dcx-deficient cells thus migrate in a disorganized manner, extending and retracting short branches and making less long-distant movements of the nucleus. Despite these differences, migratory speeds and distances remain similar to wild-type cells. These novel data thus highlight a role for Dcx, a microtubule-associated protein enriched at the leading edge in the branching and nucleokinesis of migrating interneurons.


Asunto(s)
Movimiento Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Interneuronas/patología , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Neuropéptidos/deficiencia , Neuropéptidos/genética , Animales , Células Cultivadas , Técnicas de Cocultivo , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Masculino , Eminencia Media/citología , Eminencia Media/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/fisiología , Neuropéptidos/fisiología , Técnicas de Cultivo de Órganos
10.
Am J Med Genet B Neuropsychiatr Genet ; 141B(1): 67-70, 2006 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-16331680

RESUMEN

Synaptogenesis, the formation of functional synapses, is a crucial step for the development of the central nervous system. Among the genes involved in this process are cell adhesion molecules, such as protocadherins and neuroligins, which are essential factors for the identification of the appropriate partner cell and the formation of synapses. In this work, we studied the expression and the genetic variability of two closely related members of the protocadherin family PCDH11X/Y, located on the X and the Y chromosome, respectively. PCDH11Y is one of the rare genes specific to the hominoid lineage, being absent in other primates. Expression analysis indicated that transcripts of the PCDH11X/Y genes are mainly detected in the cortex of the human brain. Mutation screening of 30 individuals with autism identified two PCDH11Y polymorphic amino acid changes, F885V and K980N. These variations are in complete association, appeared during human evolution approximately 40,000 years ago and represent informative polymorphisms to study Y chromosome variability in populations. We studied the frequency of these variants in males with autism spectrum disorders (n = 110), attention deficit hyperactivity disorder (ADHD; n = 61), bipolar disorder (n = 61), obsessive-compulsive disorder (n = 51), or schizophrenia (n = 61) and observed no significant differences when compared to ethnically-matched control populations. These findings do not support the role of PCDH11Y, or more generally of a frequent specific Y chromosome, in the susceptibility to these neuropsychiatric disorders.


Asunto(s)
Cadherinas/genética , Predisposición Genética a la Enfermedad/genética , Trastornos Mentales/genética , Mutación , Secuencia de Aminoácidos , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno Autístico/genética , Trastorno Bipolar/genética , Encéfalo/metabolismo , Análisis Mutacional de ADN , Francia , Expresión Génica , Frecuencia de los Genes , Haplotipos , Humanos , Masculino , Datos de Secuencia Molecular , Mutación Missense , Polimorfismo Genético , Protocadherinas , ARN/genética , ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Suecia
11.
Mol Cell Neurosci ; 28(1): 153-64, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15607950

RESUMEN

Doublecortin (DCX) is a microtubule-associated protein involved in neuronal migration, which causes X-linked lissencephaly and subcortical laminar heterotopia (SCLH) when mutated. Here we show that DCX interacts with the ubiquitin-specific protease Drosophila fat facets related on X chromosome (DFFRX). This interaction was confirmed by targeted mutagenesis, colocalization, and immunoprecipitation studies. DFFRX is thought to deubiquitinate specific substrates including beta-catenin, preventing their degradation by the proteasome. Interestingly, unlike beta-catenin, no ubiquitinated forms of DCX could be detected, and indeed we show that DCX interacts with a novel recognition domain in DFFRX, located outside of its catalytic site. We also show that DFFRX associates with microtubules at specific subcellular compartments, including those enriched in DCX. These results thus suggest that in addition to vesicular trafficking, DCX may play a role in the regulation of cell adhesion via its interaction with DFFRX in migrating and differentiating neurons.


Asunto(s)
Encéfalo/metabolismo , Endopeptidasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuritas/metabolismo , Neuropéptidos/metabolismo , Ubiquitina/metabolismo , Animales , Encéfalo/embriología , Células COS , Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Endopeptidasas/genética , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Neuropéptidos/genética , Células PC12 , Péptido Hidrolasas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína/fisiología , Ratas , Transactivadores/metabolismo , Tubulina (Proteína)/metabolismo , Ubiquitina Tiolesterasa , Levaduras , beta Catenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA