Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Basic Microbiol ; 61(8): 709-720, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34228389

RESUMEN

Trypsin is a protein-digesting enzyme that is essential for the growth and regeneration of bone, muscle, cartilage, skin, and blood. The trypsin inhibitors have various role in diseases such as inflammation, Alzheimer's disease, pancreatitis, rheumatoid arthritis, cancer prognosis, metastasis and so forth. From 10 endophytic fungi isolated, we were able to screen only one strain with the required activity. The fungus with activity was obtained as an endophyte from Dendrophthoe falcata and was later identified as Nigrospora sphaerica. The activity was checked by enzyme assays using trypsin. The fungus was fermented and the metabolites were extracted and further purified by bioassay-guided chromatographic methods and the compound isolated was identified using gas chromatography-mass spectrometry. The compound was identified as quercetin. Docking studies were employed to study the interaction. The absorption, distribution, metabolism, and excretion analysis showed satisfactory results and the compound has no AMES and hepatotoxicity. This study reveals the ability of N. sphaerica to produce bioactive compound quercetin has been identified as a potential candidate for trypsin inhibition. The present communication describes the first report claiming that N. sphaerica strain AVA-1 can produce quercetin and it can be considered as a sustainable source of trypsin active-site inhibitors.


Asunto(s)
Ascomicetos/metabolismo , Inhibidores de Tripsina/química , Inhibidores de Tripsina/aislamiento & purificación , Tripsina/metabolismo , Antioxidantes , Endófitos/metabolismo , Fermentación , Loranthaceae , Simulación del Acoplamiento Molecular , Inhibidores de Tripsina/metabolismo , Inhibidores de Tripsina/farmacología
2.
Nanomaterials (Basel) ; 13(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36770535

RESUMEN

The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.

3.
Nutrients ; 14(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36500994

RESUMEN

The environment has rapidly looked at proven specialist task forces in the aftermath of the COVID-19 pandemic to build public health policies and measures to mitigate the effects of emerging coronaviruses. According to the researchers, taking 10 µg of 25-hydroxy vitamin D daily is recommended to keep us safe. There have been several studies recently indicating that there is a reduced risk of contracting Coronavirus by 25-hydroxy vitamin D consumption, even though there is no scientific data to prove that one would not affect the COVID-19 viral infection by 25-hydroxy vitamin D consumption. In this regard, the present study investigates the important literature and the role of 25-hydroxy vitamin D to prevent COVID-19 infection by conducting an in-silico study with SARS-CoV-2 spike protein as a target. Lopinavir, a previously reported drug candidate, served as a reference standard for the study. MD simulations were carried out to improve predictions of receptor-ligand complexes which offer novelty and strength to the current study. MD simulation protocols were explored and subjected to 25-hydroxy vitamin D and a known drug, Lopinavir. Comparison of ligands at refined models to the crystal structure led to promising results. Appropriate timescale simulations have been used to understand the activation mechanism, the role of water networks for receptor function, and the ligand binding process. Furthermore, MD simulations in combination with free energy calculations have also been carried out for lead optimization, evaluation of ligand binding modes, and assessment of ligand selectivity. From the results, 25-hydroxy vitamin D was discovered to have the vital interaction and highest potency in LBE, lower RMSD, and lower inhibition intensity similar to the standard. The findings from the current study suggested that 25-hydroxy vitamin D would be more effective in treating COVID-19. Compared with Lopinavir, 25-hydroxy vitamin D had the most potent interaction with the putative binding sites of the SARS-CoV-2 spike protein of COVID-19.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/química , Pandemias/prevención & control , SARS-CoV-2/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Vitamina D/farmacología , Antivirales/farmacología
4.
Expert Opin Ther Pat ; 29(5): 385-406, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31030616

RESUMEN

INTRODUCTION: Chalcone or benzylideneacetophenone or 1,3-diphenyl-2-propene-1-one is a natural product comprising of two aromatic rings connected together by a three-carbon α, ß unsaturated carbonyl bridge. It is one of the most privileged scaffolds in medicinal chemistry that can be synthesized in the laboratory and can be converted into several therapeutically active heterocyclic scaffolds. It exhibits multifarious pharmacological activities and also plays a key role in several non-pharmacological scientific applications. AREAS COVERED: The present article comprehensively focuses on the approved patents during the time duration 2014-2018 on various chalcone molecules with diverse pharmacological activities. EXPERT OPINION: The study puts forward the latest updated therapeutic applications of chalcone-based compounds as antiproliferative, antidiabetic, anti-infective, anti-inflammatory, antioxidant, antiaging, neuroprotective, and cardioprotective agents. The type, position, and the number of substituents present on the chalcone scaffold have been perceived to play an imperative function in interacting with molecular targets (receptor, enzyme, and/or channel) to express the biological responses. In the majority of the studies, the overall activity of the ligand administered as pharmaceutically acceptable salt is found to be better than that of standard marketed drug preparation. The article will certainly attract (medicinal)-chemists actively involved in the development of therapeutically active scaffolds.


Asunto(s)
Chalconas/farmacología , Diseño de Fármacos , Desarrollo de Medicamentos/métodos , Animales , Chalconas/química , Química Farmacéutica/métodos , Humanos , Terapia Molecular Dirigida , Patentes como Asunto , Relación Estructura-Actividad
5.
Comput Biol Chem ; 67: 260-265, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28193552

RESUMEN

The peroxisome proliferator activator receptor-γ (PPAR-γ) remained the most successful target for management of diabetes mellitus. The present work endeavors rational designing of some novel PPAR-γ agonists bearing benzylideneamino-benzylidene-thiazolidine-2,4-dione scaffold. The research involved virtual screening of 37 different molecules by molecular docking studies performed by Molecular Design Suite (MDS) into the ligand binding domain of PPAR-γ receptor to explore the binding affinity and conformations of the molecules. Eight compounds; TZD1, TZD-4, TZD-7, TZD-16, TZD-25, TZD-28, TZD-34, and TZD-37 demonstrated high affinity for PPAR-γ binding site. The following compounds were taken into the account and synthesized using a multi-step synthesis protocol. The purity of the synthesized compounds was ascertained by sophisticated analytical techniques such as IR, NMR, Mass and elemental analysis. The compounds were tested for glucose uptake assay by using 3T3-L1 cell lines, where all the candidates exhibited nearly similar potential for uptake of glucose into the lines as that of standard drug rosiglitazone. Three molecules; TZD-1, TZD-4, and TZD-34 showed most prominent activity over hyperglycemic control. This research opened new avenues for smart designing of molecules with high efficiency towards the management of hyperglycemia.


Asunto(s)
Compuestos de Bencilideno/farmacología , Diseño de Fármacos , Hipoglucemiantes/farmacología , PPAR gamma/agonistas , Tiazolidinedionas/farmacología , Células 3T3-L1 , Animales , Compuestos de Bencilideno/síntesis química , Compuestos de Bencilideno/química , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Ratones , Simulación del Acoplamiento Molecular , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA