Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neuroinflammation ; 18(1): 222, 2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34565380

RESUMEN

BACKGROUND: During inflammatory demyelination, TNF receptor 1 (TNFR1) mediates detrimental proinflammatory effects of soluble TNF (solTNF), whereas TNFR2 mediates beneficial effects of transmembrane TNF (tmTNF) through oligodendroglia, microglia, and possibly other cell types. This model supports the use of selective inhibitors of solTNF/TNFR1 as anti-inflammatory drugs for central nervous system (CNS) diseases. A potential obstacle is the neuroprotective effect of solTNF pretreatment described in cultured neurons, but the relevance in vivo is unknown. METHODS: To address this question, we generated mice with neuron-specific depletion of TNFR1, TNFR2, or inhibitor of NF-κB kinase subunit ß (IKKß), a main downstream mediator of TNFR signaling, and applied experimental models of inflammatory demyelination and acute and preconditioning glutamate excitotoxicity. We also investigated the molecular and cellular requirements of solTNF neuroprotection by generating astrocyte-neuron co-cultures with different combinations of wild-type (WT) and TNF and TNFR knockout cells and measuring N-methyl-D-aspartate (NMDA) excitotoxicity in vitro. RESULTS: Neither neuronal TNFR1 nor TNFR2 protected mice during inflammatory demyelination. In fact, both neuronal TNFR1 and neuronal IKKß promoted microglial responses and tissue injury, and TNFR1 was further required for oligodendrocyte loss and axonal damage in cuprizone-induced demyelination. In contrast, neuronal TNFR2 increased preconditioning protection in a kainic acid (KA) excitotoxicity model in mice and limited hippocampal neuron death. The protective effects of neuronal TNFR2 observed in vivo were further investigated in vitro. As previously described, pretreatment of astrocyte-neuron co-cultures with solTNF (and therefore TNFR1) protected them against NMDA excitotoxicity. However, protection was dependent on astrocyte, not neuronal TNFR1, on astrocyte tmTNF-neuronal TNFR2 interactions, and was reproduced by a TNFR2 agonist. CONCLUSIONS: These results demonstrate that neuronal TNF receptors perform fundamentally different roles in CNS pathology in vivo, with neuronal TNFR1 and IKKß promoting microglial inflammation and neurotoxicity in demyelination, and neuronal TNFR2 mediating neuroprotection in excitotoxicity. They also reveal that previously described neuroprotective effects of solTNF against glutamate excitotoxicity in vitro are indirect and mediated via astrocyte tmTNF-neuron TNFR2 interactions. These results consolidate the concept that selective inhibition of solTNF/TNFR1 with maintenance of TNFR2 function would have combined anti-inflammatory and neuroprotective properties required for safe treatment of CNS diseases.


Asunto(s)
Quinasa I-kappa B/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Animales , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Agonistas de Aminoácidos Excitadores/toxicidad , Femenino , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Neuronas/patología , Neuroprotección/fisiología , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/patología
2.
J Immunol ; 192(9): 4122-33, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24683189

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a valuable model for studying immunopathology in multiple sclerosis (MS) and for exploring the interface between autoimmune responses and CNS tissue that ultimately leads to lesion development. In this study, we measured gene expression in mouse spinal cord during myelin oligodendrocyte gp35-55 peptide-induced EAE, using quantitative RT-PCR, to identify gene markers that monitor individual hallmark pathological processes. We defined a small panel of genes whose longitudinal expression patterns provided insight into the timing, interrelationships, and mechanisms of individual disease processes and the efficacy of therapeutics for the treatment of MS. Earliest transcriptional changes were upregulation of Il17a and sharp downregulation of neuronal and oligodendrocyte marker genes preceding clinical disease onset, whereas neuroinflammatory markers progressively increased as symptoms and tissue lesions developed. EAE-induced gene-expression changes were not altered in mice deficient in IKKß in cells of the myeloid lineage compared with controls, but the administration of a selective inhibitor of soluble TNF to mice from the day of immunization delayed changes in the expression of innate inflammation, myelin, and neuron markers from the presymptomatic phase. Proof of principle that the gene panel shows drug screening potential was obtained using a well-established MS therapeutic, glatiramer acetate. Prophylactic treatment of mice with glatiramer acetate normalized gene marker expression, and this correlated with the level of therapeutic success. These results show that neurons and oligodendrocytes are highly sensitive to CNS-directed autoimmunity before the development of clinical symptoms and immunopathology and reveal a role for soluble TNF in mediating the earliest changes in gene expression.


Asunto(s)
Encefalomielitis Autoinmune Experimental/genética , Esclerosis Múltiple/genética , Neuronas/metabolismo , Oligodendroglía/metabolismo , Médula Espinal/metabolismo , Transcriptoma , Animales , Biomarcadores/análisis , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/patología
3.
Bioorg Med Chem ; 21(21): 6718-25, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23993671

RESUMEN

Multiple antigenic peptide (MAP) systems are dendrimeric structures bearing multiple copies of identical or different peptide epitopes, and they have been demonstrated to show enhanced immunogenicity. Herein, we report the direct (divergent) and indirect (convergent) synthesis, using contemporary synthetic approaches, of a di-branched antigenic peptide (di-BAP) containing the immunodominant epitope MBP(83-99), which is implicated in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). The direct synthesis (di-BAP 1) was performed using microwave irradiation. The indirect synthesis (di-BAP 2) was carried out performing an efficient chemoselective coupling reaction through the formation of a thioether bond. Both di-BAPs were conjugated to polysaccharide mannan since mannosylation is a promising technique to achieve modulation in immune response. The conjugation was achieved through free amino groups of both di-BAPs via the formation of Schiff bases. The mannan-conjugated di-BAPs were further evaluated in vivo in a prophylactic vaccination protocol, prior to EAE induction in Lewis rats.


Asunto(s)
Mananos/química , Proteína Básica de Mielina/síntesis química , Fragmentos de Péptidos/síntesis química , Péptidos/síntesis química , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Epítopos/química , Epítopos/inmunología , Femenino , Microondas , Datos de Secuencia Molecular , Proteína Básica de Mielina/química , Proteína Básica de Mielina/inmunología , Oxidación-Reducción , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Péptidos/química , Péptidos/inmunología , Polilisina/química , Ratas , Ratas Endogámicas Lew , Bases de Schiff/química
4.
JCI Insight ; 2(8)2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28422748

RESUMEN

Multiple sclerosis (MS) is an inflammatory CNS demyelinating disease in which remyelination largely fails. Transmembrane TNF (tmTNF) and TNF receptor 2 are important for remyelination in experimental MS models, but it is unknown whether soluble TNF (solTNF), a major proinflammatory factor, is involved in regeneration processes. Here, we investigated the specific contribution of solTNF to demyelination and remyelination in the cuprizone model. Treatment with XPro1595, a selective inhibitor of solTNF that crosses the intact blood-brain barrier (BBB), in cuprizone-fed mice did not prevent toxin-induced oligodendrocyte loss and demyelination, but it permitted profound early remyelination due to improved phagocytosis of myelin debris by CNS macrophages and prevented disease-associated decline in motor performance. The beneficial effects of XPro1595 were absent in TNF-deficient mice and replicated in tmTNF-knockin mice, showing that tmTNF is sufficient for the maintenance of myelin and neuroprotection. These findings demonstrate that solTNF inhibits remyelination and repair in a cuprizone demyelination model and suggest that local production of solTNF in the CNS might be one reason why remyelination fails in MS. These findings also suggest that disinhibition of remyelination by selective inhibitors of solTNF that cross the BBB might represent a promising approach for treatment in progressive MS.

5.
Neurotoxicology ; 55: 58-64, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27211850

RESUMEN

Bortezomib is a proteasome inhibitor with a remarkable antitumor activity, used in the clinic as first line treatment for multiple myeloma. One hallmark of bortezomib mechanism of action in neoplastic cells is the inhibition of nuclear factor kappa B (NFκB), a transcription factor involved in cell survival and proliferation. Bortezomib-induced peripheral neuropathy is a dose-limiting toxicity that often requires adjustment of treatment and affects patient's prognosis and quality of life. Since disruption of NFκB pathway can also affect neuronal survival, we assessed the role of NFκB in bortezomib-induced neuropathy by using a transgenic mouse that selectively provides blockage of the NFκB pathway in neurons. Interestingly, we observed that animals with impaired NFκB activation developed significantly less severe neuropathy than wild type animals, with particular preservation of large myelinated fibers, thus suggesting that neuronal NFκB activation plays a positive role in bortezomib induced neuropathy and that bortezomib treatment might induce neuropathy by inhibiting NFκΒ in non-neuronal cell types or by targeting other signaling pathways. Therefore, inhibition of NFκB might be a promising strategy for the cotreatment of cancer and neuropathy.


Asunto(s)
Bortezomib , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Transducción de Señal/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , Conducción Nerviosa/efectos de los fármacos , Conducción Nerviosa/genética , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Péptidos/uso terapéutico , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Fosforilación/genética , Ubiquitina Tiolesterasa/metabolismo
6.
Exp Neurol ; 267: 254-67, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25447934

RESUMEN

Antigen presenting cells (APC) are critical for regulating immune responses. We tested mannan-peptide conjugates for targeting myelin peptides to APC to induce T cell tolerance and resistance to experimental autoimmune encephalomyelitis (EAE). Myelin peptides conjugated to mannan in oxidized (OM) or reduced (RM) forms protected mice against EAE in prophylactic and therapeutic protocols, with OM-conjugated peptides giving best results. Protection was peptide-specific and associated with reduced antigen-specific T cell proliferation, but not alterations in Th1, Th17 and Treg cell differentiation or T cell apoptosis compared to EAE controls. Bone marrow-derived dendritic cells (DC) loaded with OM-MOG showed up-regulated expression of co-stimulatory molecules, reduced PD-L1 expression and enhanced CD40-inducible IL-12 and IL-23 production compared to MOG DC, features consistent with immunogenic DC. OM-MOG induced active T cell tolerance because i.d. administration or passive transfer of OM-MOG DC suppressed ongoing EAE, while OM-MOG-vaccinated mice did not reduce the proliferation of transferred MOG-specific T cells. As in vivo, MOG-specific T cells cultured with OM-MOG DC showed reduced proliferation and equal Th1 and Th17 cell differentiation compared to those with MOG DC, but surprisingly cytokine production was unresponsive to CD40 engagement. Impaired effector T cell function was further evidenced in spinal cord sections from OM-MOG-vaccinated EAE mice, where markedly reduced numbers of CD3(+) T cells were present, restricted to leptomeninges and exceptional parenchymal lesions. Our results show that mannan-conjugated myelin peptides protect mice against EAE through the expansion of antigen-specific Th1 and Th17 cells with impaired proliferation responses and APC-induced co-stimulatory signals that are required for licensing them to become fully pathogenic T cells.


Asunto(s)
Encefalomielitis Autoinmune Experimental/terapia , Mananos/uso terapéutico , Proteína Básica de Mielina/uso terapéutico , Células TH1/fisiología , Células Th17/fisiología , Animales , Apoptosis/fisiología , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/inmunología , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/inmunología , Antígeno Ki-67/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Glicoproteína Mielina-Oligodendrócito/inmunología , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/toxicidad , Péptidos/uso terapéutico , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA