Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer Ther ; 19(9): 1875-1888, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518207

RESUMEN

Despite advances in the treatment of acute myeloid leukemia (AML), novel therapies are needed to induce deeper and more durable clinical response. Bispecific T-cell Engager (BiTE) molecules, which redirect patient T cells to lyse tumor cells, are a clinically validated modality for hematologic malignancies. Due to broad AML expression and limited normal tissue expression, fms-related tyrosine kinase 3 (FLT3) is proposed to be an optimal BiTE molecule target. Expression profiling of FLT3 was performed in primary AML patient samples and normal hematopoietic cells and nonhematopoietic tissues. Two novel FLT3 BiTE molecules, one with a half-life extending (HLE) Fc moiety and one without, were assessed for T-cell-dependent cellular cytotoxicity (TDCC) of FLT3-positive cell lines in vitro, in vivo, and ex vivo FLT3 protein was detected on the surface of most primary AML bulk and leukemic stem cells but only a fraction of normal hematopoietic stem and progenitor cells. FLT3 protein detected in nonhematopoietic cells was cytoplasmic. FLT3 BiTE molecules induced TDCC of FLT3-positive cells in vitro, reduced tumor growth and increased survival in AML mouse models in vivo Both molecules exhibited reproducible pharmacokinetic and pharmacodynamic profiles in cynomolgus monkeys in vivo, including elimination of FLT3-positive cells in blood and bone marrow. In ex vivo cultures of primary AML samples, patient T cells induced TDCC of FLT3-positive target cells. Combination with PD-1 blockade increased BiTE activity. These data support the clinical development of an FLT3 targeting BiTE molecule for the treatment of AML.


Asunto(s)
Anticuerpos Biespecíficos/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Leucemia Mieloide Aguda/tratamiento farmacológico , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Anticuerpos Biespecíficos/farmacología , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Citotoxicidad Inmunológica , Sinergismo Farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Células K562 , Leucemia Mieloide Aguda/metabolismo , Macaca fascicularis , Ratones , Resultado del Tratamiento , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores
2.
Sci Rep ; 9(1): 9807, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285465

RESUMEN

Mapping network analysis in cells and tissues can provide insights into metabolic adaptations to changes in external environment, pathological conditions, and nutrient deprivation. Here, we reconstructed a genome-scale metabolic network of the rat liver that will allow for exploration of systems-level physiology. The resulting in silico model (iRatLiver) contains 1,882 reactions, 1,448 metabolites, and 994 metabolic genes. We then used this model to characterize the response of the liver's energy metabolism to a controlled perturbation in diet. Transcriptomics data were collected from the livers of Sprague Dawley rats at 4 or 14 days of being subjected to 15%, 30%, or 60% diet restriction. These data were integrated with the iRatLiver model to generate condition-specific metabolic models, allowing us to explore network differences under each condition. We observed different pathway usage between early and late time points. Network analysis identified several highly connected "hub" genes (Pklr, Hadha, Tkt, Pgm1, Tpi1, and Eno3) that showed differing trends between early and late time points. Taken together, our results suggest that the liver's response varied with short- and long-term diet restriction. More broadly, we anticipate that the iRatLiver model can be exploited further to study metabolic changes in the liver under other conditions such as drug treatment, infection, and disease.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Hígado/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Metabolómica/métodos , Animales , Simulación por Computador , Dieta/efectos adversos , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Análisis de Componente Principal , Ratas , Ratas Sprague-Dawley
3.
PLoS One ; 9(2): e88750, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24551150

RESUMEN

Gene expression profiling is a tool to gain mechanistic understanding of adverse effects in response to compound exposure. However, little is known about how the common handling procedures of experimental animals during a preclinical study alter baseline gene expression. We report gene expression changes in the livers of female Sprague-Dawley rats following common handling procedures. Baseline gene expression changes identified in this study provide insight on how these changes may affect interpretation of gene expression profiles following compound exposure. Rats were divided into three groups. One group was not subjected to handling procedures and served as controls for both handled groups. Animals in the other two groups were weighed, subjected to restraint in Broome restrainers, and administered water via oral gavage daily for 1 or 4 days with tail vein blood collections at 1, 2, 4, and 8 hours postdose on days 1 and 4. Significantly altered genes were identified in livers of animals following 1 or 4 days of handling when compared to the unhandled animals. Gene changes in animals handled for 4 days were similar to those handled for 1 day, suggesting a lack of habituation. The altered genes were primarily immune function related genes. These findings, along with a correlating increase in corticosterone levels suggest that common handling procedures may cause a minor immune system perturbance.


Asunto(s)
Experimentación Animal , Artefactos , Regulación de la Expresión Génica , Hígado/metabolismo , Animales , Recolección de Muestras de Sangre/veterinaria , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Modelos Genéticos , Ratas , Ratas Sprague-Dawley , Restricción Física/veterinaria , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA