Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Biol Rep ; 51(1): 89, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38184807

RESUMEN

BACKGROUND: Kappaphycus alvarezii, a marine red algae species, has gained significant attention in recent years due to its versatile bioactive compounds. Among these, κ-carrageenan (CR), a sulfated polysaccharide, exhibits remarkable antimicrobial properties. This study emphasizes the synergism attained by functionalizing zinc oxide nanoparticles (ZnO NPs) with CR, thereby enhancing its antimicrobial efficacy and target specificity against dental pathogens. METHODS: In this study, we synthesized ZnO-CR NPs and characterized them using SEM, FTIR, and XRD techniques to authenticate their composition and structural attributes. Moreover, our investigation revealed that ZnO-CR NPs possess better free radical scavenging capabilities, as evidenced by their effective activity in the DPPH and ABTS assay. RESULTS: The antimicrobial properties of ZnO-CR NPs were systematically assessed using a zone of inhibition assay against dental pathogens of S. aureus, S. mutans, E. faecalis, and C. albicans, demonstrating their substantial inhibitory effects at a minimal concentration of 50 µg/mL. We elucidated the interaction between CR and the receptors of dental pathogens to further understand their mechanism of action. The ZnO-CR NPs demonstrated a dose-dependent anticancer effect at concentrations of 5 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL on KB cells, a type of Human Oral Epidermal Carcinoma. The mechanism by which ZnO-CA NPs induced apoptosis in KB cells was determined by observing an increase in the expression of the BCL-2, BAX, and P53 genes. CONCLUSION: Our findings unveil the promising potential of ZnO-CR NPs as a candidate with significant utility in dental applications. The demonstrated biocompatibility, potent antioxidant and antiapoptotic activity, along with impressive antimicrobial efficacy position these NPs as a valuable resource in the ongoing fight against dental pathogens and oral cancer.


Asunto(s)
Antiinfecciosos , Neoplasias de la Boca , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Carragenina/farmacología , Staphylococcus aureus , Neoplasias de la Boca/tratamiento farmacológico , Apoptosis , Candida albicans
2.
Mol Biol Rep ; 51(1): 730, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864973

RESUMEN

BACKGROUND: Antimicrobial resistance has surged due to widespread antimicrobial drug use, prompting interest in biosynthesizing nanoparticles from marine-derived actinomycetes extracellular metabolites, valued for their diverse bioactive compounds. This approach holds promise for addressing the urgent need for novel antimicrobial agents. The current study aimed to characterize novel bioactive compounds from unexplored biodiversity hotspots, halophilic Streptomyces sp. isolated from mangrove sediment in the Pichavaram region, India. METHODS AND RESULTS: Streptomyces rochei SSCM102 was conclusively identified through morphological and molecular characterization. Synthesis of silver nanoparticles (AgNPs) from Streptomyces rochei SSCM102 was characterized using various techniques, including UV-Vis, XRD, SEM, EDX, and FT-IR. The UV-Vis spectrum of the reduced AgNPs exhibited a prominent peak at 380 nm, confirming the AgNPs. The UV-Vis spectrum confirmed the synthesis of AgNP, and SEM analysis revealed a cubic morphology with sizes ranging from 11 to 21 nm. The FTIR spectrum demonstrated a shift in frequency widths between 626 cm-1 and 3432 cm-1. The EDX analysis substantiated the presence of metallic silver, evident from a strong band at 1.44 keV. The synthesized AgNPs exhibited antibacterial efficacy against human pathogens Escherichia coli (64 ± 0.32 µg/ml), Klebsiella pneumoniae (32 ± 0.16 µg/ml), and Pseudomonas aeruginosa (16 ± 0.08 µg/ml) by MIC and MBC values of 128 ± 0.64 (µg/ml), 64 ± 0.32 (µg/ml) and 32 ± 0.16 (µg/ml), respectively. Additionally, at a concentration of 400 µg/ml, the AgNPs displayed a 72% inhibition of DPPH radicals, indicating notable antioxidant capacity. The LC50 value of 130 µg/mL indicates that the green-synthesized AgNPs have lower toxicity by Brine Shrimp Larvae assay. CONCLUSION: The study's novel approach to synthesizing eco-friendly silver nanoparticles using Halophilic Streptomyces rochei SSCM102 contributes significantly to the field of biomedical research and drug development. By demonstrating potent antibacterial properties and aligning with sustainability goals, these nanoparticles offer promising avenues for novel antibacterial therapies.


Asunto(s)
Antibacterianos , Sedimentos Geológicos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Streptomyces , Streptomyces/metabolismo , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Sedimentos Geológicos/microbiología , Tecnología Química Verde/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , India , Bacterias/efectos de los fármacos
3.
Fish Physiol Biochem ; 50(1): 307-318, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38376668

RESUMEN

Aquaculture has intensified tremendously with the increasing demand for protein sources as the global population grows. However, this industry is plagued with major challenges such as poor growth performance, the lack of a proper environment, and immune system impairment, thus creating stress for the aquaculture species and risking disease outbreaks. Currently, prophylactics such as antibiotics, vaccines, prebiotics, probiotics, and phytobiotics are utilized to minimize the negative impacts of high-density farming. One of the promising prophylactic agents incorporated in fish feed is resveratrol, a commercial phytophenol derived via the methanol extraction method. Recent studies have revealed many beneficial effects of resveratrol in aquatic animals. Therefore, this review discusses and summarizes the roles of resveratrol in improving growth performance, flesh quality, immune system, antioxidant capacity, disease resistance, stress mitigation, and potential combination with other prophylactic agents for aquatic animals.


Asunto(s)
Peces , Probióticos , Animales , Resveratrol/farmacología , Probióticos/farmacología , Acuicultura/métodos , Resistencia a la Enfermedad
4.
Mar Drugs ; 21(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37233472

RESUMEN

Exploration of seaweeds to unravel their bioactive metabolites from the perspective of wider applications gained substantial importance. The present study was performed to investigate the total phenolic, flavonoid, tannin content, antioxidant activity and antibacterial potential of various solvent extracts of green seaweed Caulerpa racemosa. The methanolic extract showed higher phenolic (11.99 ± 0.48 mg gallic acid equivalents/g), tannin (18.59 ± 0.54 mg tannic acid equivalents/g) and flavonoid (33.17 ± 0.76 mg quercetin equivalents/g) content than other extracts. Antioxidant activity was determined by using 2,2-diphenylpicrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay with different concentrations of C. racemosa extracts. The methanolic extract showed higher scavenging potential in both the DPPH and ABTS activity with the inhibition value of 54.21 ± 1.39% and 76.62 ± 1.08%, respectively. Bioactive profiling was also identified by using Gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared (FT-IR) techniques. These studies revealed the presence of valuable bioactive compounds in C. racemosa extracts and these compounds might be responsible for antimicrobial, antioxidant, anticancer and anti-mutagenic properties. Major compounds identified in GC-MS were 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, 3-hexadecene and Phthalic acid. In terms of antibacterial activity, C. racemosa has promising antibacterial potential against aquatic pathogens Aeromonas hydrophila, Aeromonas veronii and Aeromonas salmonicida. Further evaluation studies focusing aquatic related aspects would reveal the novel bioproperties and applications of C. racemosa.


Asunto(s)
Caulerpa , Algas Marinas , Antioxidantes/química , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Flavonoides/análisis , Fenoles/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Taninos
5.
Molecules ; 28(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764521

RESUMEN

Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.


Asunto(s)
Aphanomyces , Animales , Aphanomyces/genética , Pez Cebra , Hongos , Péptidos , Factores de Virulencia
6.
Molecules ; 28(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37513223

RESUMEN

Diabetes Mellitus is a metabolic disease that leads to microvascular complications like Diabetic retinopathy (DR), a major cause of blindness worldwide. Current medications for DR are expensive and report multiple side effects; therefore, an alternative medication that alleviates the disease condition is required. An interventional approach targeting the vascular endothelial growth factor (VEGF) remains a treatment strategy for DR. Anti-VEGF medicines are being investigated as the main therapy for managing vision-threatening complications of DR, such as diabetic macular oedema. Therefore, this study investigated the effect of flavonoid naringenin (NG) from citrus fruits on inhibiting early DR in zebrafish. When exposed to 130 mM glucose, the zebrafish larvae developed a hyperglycaemic condition accompanied by oxidative stress, cellular damage, and lipid peroxidation. Similarly, when adult zebrafish were exposed to 4% Glucose, high glucose levels were observed in the ocular region and massive destruction in the retinal membrane. High glucose upregulated the expression of VEGF. In comparison, the co-exposure to NG inhibited oxidative stress and cellular damage and restored the glutathione levels in the ocular region of the zebrafish larvae. NG regressed the glucose levels and cellular damage along with an inhibition of macular degeneration in the retina of adult zebrafish and normalized the overexpression of VEGF as a promising strategy for treating DR. Therefore, intervention of NG could alleviate the domestication of alternative medicine in ophthalmic research.


Asunto(s)
Retinopatía Diabética , Pez Cebra , Animales , Pez Cebra/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Retinopatía Diabética/metabolismo , Estrés Oxidativo , Glucosa/farmacología
7.
Fish Physiol Biochem ; 49(6): 1435-1459, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996691

RESUMEN

Aquatic bacterial pathogens can cause severe economic loss in aquaculture industry. An opportunistic pathogen, Aeromonas hydrophila is responsible for Motile Aeromonas Septicemia, leading to high mortality rates in fish. The present study was focused on the efficacy of Aloe barbadensis replacing fishmeal diets on hematological, serum biochemical, antioxidant, histopathological parameters, and disease resistance against A. hydrophila infection in Labeo rohita. Isonitrogenous fishmeal replaced diets (FMR) were prepared with varying levels of A. barbadensis at D1 (0%) (control), D2 (25%), D3 (50%), D4 (75%) and D5 (100%) then fed to L. rohita. After 60 days of post-feeding, the experimental fish were challenged with A. hydrophila. Blood and organs were collected and examined at 1- and 15-days post infection (dpi). The results demonstrated that on 1 dpi, white blood cells (WBC), total protein, cholesterol and low-density lipoprotein (LDL) levels were significantly increased in D3 diet fed groups. The D2 and D3 diet fed group showed decreasing trends of serum glutamic pyruvic transaminase (SGPT) and antioxidant enzymes activity on 15 dpi. The histopathological architecture results clearly illustrated that the D3 diet fed group had given a higher protective effect by reducing the pathological changes associated with A. hydrophila infection in liver, intestine and muscle. Higher percentage of survival rate was also observed in D3 diet fed group. Therefore, the present study suggested that the dietary administration of A. barbadensis up to 50% fishmeal replacement (D3 diet) can elicit earlier antioxidant activity, innate immune response and improve survival rate in L. rohita against A. hydrophila infection.


Asunto(s)
Aloe , Cyprinidae , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Resiliencia Psicológica , Animales , Suplementos Dietéticos/análisis , Antioxidantes/metabolismo , Aeromonas hydrophila , Dieta/veterinaria , Cyprinidae/metabolismo , Resistencia a la Enfermedad , Agua Dulce , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria
8.
Fish Shellfish Immunol ; 130: 317-322, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122634

RESUMEN

Huge amounts of non-edible by-products could be generated from fruit industrial processes. They consist mainly of peels together with low amounts of pulp and seeds. These by-products pose an environmental hazard due to soil, air, and water pollution. Moreover, treating these by-products is very expensive and under strict governmental regulations. Nevertheless, they are an excellent source of bioactive constituents, such as phenols, flavonoids, terpenes, and glucans. Based on their constituents, these by-products can significantly enhance the antioxidant defense, immune response, and modulation of gut microbiota and host resistance against various diseases. Therefore, sustainable valorization of fruits by-products can efficiently obtain value-added products that improve the well-being of organisms and reduce environmental stress, in addition to earning an additional industrial income. Since aquaculture is a vital economic sector, there is urgent to look for inexpensive natural food additives that improve health and maintain high nutritional quality for farming organisms without harming the environment and human health. Therefore, using fruit wastes as feed additives represents a striking alternative for fruitful aquaculture. In order to make use of these value-added products, it is a dire need to determine their biological effects on aquaculture organisms by understanding their mechanism of action. In this context, this review will holistically address a comprehensive focus on utilizing fruits by-products and their immunostimulant and antioxidative action.


Asunto(s)
Antioxidantes , Frutas , Adyuvantes Inmunológicos/farmacología , Animales , Antioxidantes/análisis , Acuicultura , Flavonoides , Aditivos Alimentarios , Frutas/química , Glucanos , Humanos , Fenoles , Suelo , Terpenos
9.
Sci Prog ; 107(1): 368504241231663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38490166

RESUMEN

This study examined the histological aberrations in the gill and liver tissues and behavioural changes of Tilapia guineensis fingerlings exposed to lethal concentrations of used Oilfield-based emulsifiers for 96 h. Various concentrations of the surfactants were tested, ranging from 0.0 to 15.0 ml/L. The behaviour of the fish was observed throughout the experiment, and the results showed that increasing concentrations of the surfactants led to progressively abnormal behaviour, including hyperventilation and altered opercular beat frequency. These behavioural changes indicated respiratory distress and neurotoxic effects. Histological analysis revealed structural aberrations in the gill and liver tissues, with higher concentrations causing more severe damage, such as lesions, necrosis, inflammation, and cellular degeneration. This implies that surfactants released even at low concentrations are capable of inducing changes in the tissues of aquatic organisms. These findings highlight the toxic effects of the surfactants on fish health and provide biomarkers of toxicity. Future research should focus on understanding the specific mechanisms and long-term consequences of surfactant toxicity on fish genetic composition, populations, and ecosystems to implement effective conservation measures.


Asunto(s)
Tilapia , Contaminantes Químicos del Agua , Animales , Ecosistema , Yacimiento de Petróleo y Gas , Papúa Nueva Guinea , Hígado , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad
10.
Heliyon ; 10(7): e28418, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560172

RESUMEN

Seaweed research has gained substantial momentum in recent years, attracting the attention of researchers, academic institutions, industries, policymakers, and philanthropists to explore its potential applications and benefits. Despite the growing body of literature, there is a paucity of comprehensive scientometric analyses, highlighting the need for an in-depth investigation. In this study, we utilized CiteSpace to examine the global seaweed research landscape through the Web of Science Core Collection database, assessing publication trends, collaboration patterns, network structures, and co-citation analyses across 48,278 original works published since 1975. Our results demonstrate a diverse and active research community, with a multitude of authors and journals contributing to the advancement of seaweed science. Thematic co-citation cluster analysis identified three primary research areas: "Coral reef," "Solar radiation," and "Mycosporine-like amino acid," emphasizing the multidisciplinary nature of seaweed research. The increasing prominence of "Chemical composition" and "Antioxidant" keywords indicates a burgeoning interest in characterizing the nutritional value and health-promoting properties of seaweed. Timeline co-citation analysis unveils that recent research priorities have emerged around the themes of coral reefs, ocean acidification, and antioxidants, underlining the evolving focus and interdisciplinary approach of the field. Moreover, our analysis highlights the potential of seaweed as a functional food product, poised to contribute significantly to addressing global food security and sustainability challenges. This study underscores the importance of bibliometric analysis in elucidating the global seaweed research landscape and emphasizes the need for sustained knowledge exchange and collaboration to drive the field forward. By revealing key findings and emerging trends, our research offers valuable insights for academics and stakeholders, fostering a more profound understanding of seaweed's potential and informing future research endeavors in this promising domain.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38641085

RESUMEN

In this study, we investigated the possible ecotoxicological effect of co-exposure to polystyrene nanoplastics (PS-NPs) and diclofenac (DCF) in zebrafish (Danio rerio). After six days of exposure, we noticed that the co-exposure to PS-NP (100 µg/L) and DCF (at 50 and 500 µg/L) decreased the hatching rate and increased the mortality rate compared to the control group. Furthermore, we noted that larvae exposed to combined pollutants showed a higher frequency of morphological abnormalities and increased oxidative stress, apoptosis, and lipid peroxidation. In adults, superoxide dismutase and catalase activities were also impaired in the intestine, and the co-exposure groups showed more histopathological alterations. Furthermore, the TNF-α, COX-2, and IL-1ß expressions were significantly upregulated in the adult zebrafish co-exposed to pollutants. Based on these findings, the co-exposure to PS-NPs and DCF has shown an adverse effect on the intestinal region, supporting the notion that PS-NPs synergistically exacerbate DCF toxicity in zebrafish.


Asunto(s)
Diclofenaco , Desarrollo Embrionario , Estrés Oxidativo , Poliestirenos , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/embriología , Diclofenaco/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Desarrollo Embrionario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Nanopartículas/toxicidad , Microplásticos/toxicidad , Sinergismo Farmacológico
12.
Animals (Basel) ; 13(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37627421

RESUMEN

The effects of Bacillus spp. (7 Log CFU g-1 feed) and fructooligosaccharide (FOS, 1%) as functional feed additives, either alone or in combination, were evaluated in a study on rohu, Labeo rohita fingerlings. The fish were fed different diets for 90 days, including a control diet and diets supplemented with FOS, B. licheniformis, B. methylotrophicus or synbiotic formulations of these. The results showed that the combination of B. licheniformis and FOS significantly improved weight gain, feed utilisation and protease activity compared to the other groups. Overall, the groups supplemented with probiotics and synbiotics (B. licheniformis + FOS or B. methylotrophicus + FOS) showed improvements in haematology, serum biochemistry and immune parameters compared to the control group. After 90 days of experimental feeding, the fish were challenged with pathogenic Aeromonas hydrophila, and data on haematology, immunity and stress parameters were collected. The results indicated that the application of Bacillus spp. and FOS boosted immunity and resistance to physiological stress in the fish. The highest post-challenge survival rate was observed in fish fed a diet with B. licheniformis and FOS, indicating the potential of this particular combination of functional feed additives to enhance growth, immunity and disease resistance in L. rohita.

13.
Heliyon ; 9(7): e18069, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483701

RESUMEN

Hyperuricemia has become a significant public-health concern in recent years, and the available treatments have been reported to have an adverse side effect on patients. Alocasia longiloba has been used traditionally in Malaysia for treating gout, inflammation, and wounds. However, the plant has not been investigated for its effects on hyperuricemia. This study investigated the anti-hyperuricemic and anti-inflammatory effects of A. longiloba extracts in hyperuricemic rats induced by potassium oxonate (250 mg/kg body weight). Rats were given A. longiloba extracts or a standard drug for two-week, and blood and tissue samples were collected for analysis. Results show that A. longiloba extracts significantly reduced serum uric acid levels in hyperuricemic rats and inhibited xanthine oxidase (XOD) activity in the liver and kidney, which could be the mechanism underlying the urate-lowering effects. The extracts also significantly (p < 0.05) reduced the levels of proinflammatory cytokines (IL-18 and IL-1ß) in serum samples and had hepatoprotective and nephroprotective effects in hyperuricemic rats. The study supports the use of A. longiloba as a complementary therapy for treating hyperuricemia.

14.
Heliyon ; 9(9): e20081, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810135

RESUMEN

This study aims to elucidate the evolution of catfish research publications over recent decades, identify emerging research clusters, examine keyword patterns, determine major contributors (including authors, organizations, and funding agencies), and analyze their collaborative networks and citation bursts on a global scale. The USA, Brazil, China, and India collectively contribute approximately 67% of the total catfish research publications, with a marked increase in prevalence since 2016. The most frequently occurring and dominant keywords are "channel catfish" and "responses," respectively. Intriguingly, our findings reveal 28 distinct article clusters, with prominent clusters including "yellow catfish," "channel catfish", "pectoral girdle," "African catfish", "Rio Sao Francisco basin," "Edwardsiella ictaluri," and "temperature mediated". Concurrently, keyword clustering generates seven main clusters: "new species", "growth performance", "heavy metal", "gonadotropin-releasing", "essential oil", and "olfactory receptor". This study further anticipates future research directions, offering fresh perspectives on the catfish literature landscape. To the best of our knowledge, this is the first article to conduct a comprehensive mapping review of catfish research publications worldwide.

15.
Antibiotics (Basel) ; 12(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37237796

RESUMEN

Aeromonas hydrophila, an opportunistic bacteria, causes several devastating diseases in humans and animals, particularly aquatic species. Antibiotics have been constrained by the rise of antibiotic resistance caused by drug overuse. Therefore, new strategies are required to prevent appropriate antibiotic inability from antibiotic-resistant strains. Aerolysin is essential for A. hydrophila pathogenesis and has been proposed as a potential target for inventing drugs with anti-virulence properties. It is a unique method of disease prevention in fish to block the quorum-sensing mechanism of A. hydrophila. In SEM analysis, the crude solvent extracts of both groundnut shells and black gram pods exhibited a reduction of aerolysin formation and biofilm matrix formation by blocking the QS in A. hydrophila. Morphological changes were identified in the extracts treated bacterial cells. Furthermore, in previous studies, 34 ligands were identified with potential antibacterial metabolites from agricultural wastes, groundnut shells, and black gram pods using a literature survey. Twelve potent metabolites showed interactions between aerolysin and metabolites during molecular docking analysis, in that H-Pyran-4-one-2,3 dihydro-3,5 dihydroxy-6-methyl (-5.3 kcal/mol) and 2-Hexyldecanoic acid (-5.2 kcal/mol) showed promising results with potential hydrogen bond interactions with aerolysin. These metabolites showed a better binding affinity with aerolysin for 100 ns in molecular simulation dynamics. These findings point to a novel strategy for developing drugs using metabolites from agricultural wastes that may be feasible pharmacological solutions for treating A. hydrophila infections for the betterment of aquaculture.

16.
BMC Zool ; 8(1): 10, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488631

RESUMEN

Long-whiskered catfish Sperata aor is a freshwater catfish known for its supreme flesh quality and fast growth, whose captive-reared broodstock denotes a difficult challenge for aquaculture. The reproductive dysfunctions in long-whiskered catfish raised in tank conditions were observed by comparing tissue biochemical composition and ovarian histology of wild female broodstock. Sixty (60) female broodstocks were used in the current study, consisting of 30 reared at sandy-muddy soil tank bottoms in captive conditions and 30 wild individuals collected from the haor basin during the breeding season. The fish reproductive state was investigated using the biometric and reproductive parameters, biochemical composition and levels of amino acids in the different tissues, and histological analysis of ovarian development. Results revealed that the biometrical parameters of wild and captive female broodstocks exhibited no remarkable difference (p > 0.05). Nevertheless, the wild fish had remarkably higher (p < 0.05) GSI (8.73%), oocyte weight (0.45 mg/egg), and ripeness (27.08%) in comparison with captive-reared broodstock. The total length and body weight, body weight and ovary weight, ovipositor diameter and ovary weight, and GSI and HSI displayed a positive relationship with R2 = 1, R2 = 1, R2 = 0.993, and R2 = 0.973, respectively, for wild broodstock, while R2 = 0.994, R2 = 0.806, R2 = 0.804, and R2 = 0.896, respectively, for captive broodstock. Additionally, the proximate composition in oocytes and liver tissues in both broodstocks did not differ significantly (p > 0.05). However, two essential amino acids (EAA), i.e., lysine and phenylalanine, and two non-essential amino acids, i.e., glutamic acid and glycine, were highly significant differences (p < 0.05) in the oocytes and liver of wild broodstock compared to the captive-reared broodstock. On the other hand, the EAA, e.g., isoleucine, threonine, leucine, and arginine, were highly dominated in both wild and captive female brood oocytes and liver. The ovarian histological slides from each fish group showed three oocytes developmental stages that indicated the asynchronous-reproductive ovarian oocytes of this fish. This study may be useful to fully understand the factors affecting the spawning and reproduction of S. aor broodstock, crucial for management in captive conditions as well as conservation and protection for sustainable aquaculture management of S. aor.

17.
Appl Biochem Biotechnol ; 194(10): 4424-4438, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35357664

RESUMEN

The emergence of new technologies has led to the discovery of the biological properties of nanoparticles through green approach. In the present investigation, we report the potential antibacterial, antioxidant, and anti-diabetic properties of copper nanoparticle (CuNPs) synthesized by reducing 3 mM copper acetate solution with aqueous leaf extract of Cocculus hirsutus. A colour change from deep brown to dark greenish brown indicated the formation of copper nanoparticles. The so-formed CuNPs were characterized by employing UV spectroscopy, FTIR, SEM, and EDX analyses which described sheet-like structure morphology having typical size of 63.46 nm. Later, the synthesized CuNPs efficiency was evaluated against bacterial pathogens, and was found highly toxic to B. subtilis and S. aureus strains. The synthesized CuNPs were examined through H2O2 and PMA assays which demonstrated the highest free radical scavenging activity. Besides, the resulted CuNPs revealed the higher anti-diabetic efficacy in both the [Formula: see text]-amylase and [Formula: see text] -glucosidase inhibition assays (64.5% ± 0.11 and 68.5% ± 0.11, respectively). Finally, our findings report that C. hirsutus can be exploited as a source for green synthesis of CuNPs, having potent in vitro antioxidant, antibacterial, and anti-diabetic properties.


Asunto(s)
Cocculus , Menispermaceae , Nanopartículas del Metal , Amilasas , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Cobre/química , Glucosidasas , Peróxido de Hidrógeno , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Staphylococcus aureus
18.
Front Nutr ; 9: 808630, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479755

RESUMEN

Microbial communities within fermented food (beers, wines, distillates, meats, fishes, cheeses, breads) products remain within biofilm and are embedded in a complex extracellular polymeric matrix that provides favorable growth conditions to the indwelling species. Biofilm acts as the best ecological niche for the residing microbes by providing food ingredients that interact with the fermenting microorganisms' metabolites to boost their growth. This leads to the alterations in the biochemical and nutritional quality of the fermented food ingredients compared to the initial ingredients in terms of antioxidants, peptides, organoleptic and probiotic properties, and antimicrobial activity. Microbes within the biofilm have altered genetic expression that may lead to novel biochemical pathways influencing their chemical and organoleptic properties related to consumer acceptability. Although microbial biofilms have always been linked to pathogenicity owing to its enhanced antimicrobial resistance, biofilm could be favorable for the production of amino acids like l-proline and L-threonine by engineered bacteria. The unique characteristics of many traditional fermented foods are attributed by the biofilm formed by lactic acid bacteria and yeast and often, multispecies biofilm can be successfully used for repeated-batch fermentation. The present review will shed light on current research related to the role of biofilm in the fermentation process with special reference to the recent applications of NGS/WGS/omics for the improved biofilm forming ability of the genetically engineered and biotechnologically modified microorganisms to bring about the amelioration of the quality of fermented food.

19.
Appl Biochem Biotechnol ; 194(10): 4724-4744, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35852758

RESUMEN

The Garcinia mangostana Linn (Mangosteen) is also called as "Queen of Fruits" in Malaysia. It is found in the region of Southeast Asia. It is a medicinal plant that has been used to treat cancer in a variety of cell lines. The mangosteen pericarp possesses distinctive biological properties like anticancer or antitumoral and antioxidant. It has a distinct sweet and sour taste, rich in biological compounds like xanthones. It exhibits various properties like apoptotic in tumor cells which leads to the suppression of their growth and results in their various sizes. The primary purpose of this review article is to summarize the valuable results covered by the researchers so far in the Garcinia mangostana extract and its compound like xanthones. Our focus was to explain the role of the phytoconstituent molecules in invading the cancer pathways to combat the expansion of cells. Furthermore, we still feel that there is a scope for more in silico and in vivo studies to understand and identify the specific site of action in tumoral cells and their mechanistic pathways. In conclusion, Garcinia mangostana can act as an anticancer agent by attacking various molecular pathways.


Asunto(s)
Garcinia mangostana , Xantonas , Antioxidantes , Frutas , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Xantonas/farmacología , Xantonas/uso terapéutico
20.
Saudi J Biol Sci ; 29(4): 2348-2354, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531182

RESUMEN

In the present study described the impact of water quality on the Asian clam, Corbicula fluminea, distribution in man - made Pergau Lake was carried out. Recently, Pergau Lake was gazette as state park and any activities related to fishery and agricultural were not allowed in the park. Subsequently, the nearby lake community was affected as many of them earn a living by carrying fisheries activity in the lake especially harvesting Asian clam. 10 sampling sites were selected in the lake to monitor water quality and Asian clam distribution. Water parameters data were also subjected to cluster analysis by using Ward's method with squared Euclidean distances as a measure of similarity and a dendrogram was successfully generated. The water quality of the lake is under good condition and suitable to carry fishery activities by referred to Malaysia National Water Quality Standards (NWQS). The dendrogram revealed that the sampling sites can be divided into 2 clusters where Location 1 alone in its own cluster. Another cluster possesses 2 sub-clusters where Location 2 and 3 shared similar sub cluster. Another sub-cluster has two groups namely Location 5, 6 and 8 in one group whereas Location 4, 7, 9 and 10 shared similar group. The findings of the present study showed most of sampled Asian clam in Pergau Lake was semi mature indicating highly exploitation of Asian clam in the Lake. Furthermore, there were no correlation was detected between the population of Asian clam and water quality of the lake. Hence, we suggest that seasonal harvesting Asian clam should be implemented in order to conserve the population of Asian clam in the lake at the mean time the community to continue earn a living through carrying fishery activities in the lake.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA